Comparisons of Wilson-Fowler and Parametric Cubic Splines with the Curve-Fitting Algorithms of Several Computer-Aided Design Systems

Comparisons of Wilson-Fowler and Parametric Cubic Splines with the Curve-Fitting Algorithms of Several Computer-Aided Design Systems

Author:

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The purpose of this report is to demonstrate that modern computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems can be used in the Department of Energy (DOE) Nuclear Weapons Complex (NWC) to design new and remodel old products, fabricate old and new parts, and reproduce legacy data within the inspection uncertainty limits. In this study, two two-dimensional splines are compared with several modern CAD curve-fitting modeling algorithms. The first curve-fitting algorithm is called the Wilson-Fowler Spline (WFS), and the second is called a parametric cubic spline (PCS). Modern CAD systems usually utilize either parametric cubic and/or B-splines.


Interpolating Cubic Splines

Interpolating Cubic Splines

Author: Gary D. Knott

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 247

ISBN-13: 1461213207

DOWNLOAD EBOOK

A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav els side-by-side with the art of automobile design, sail construction, and architecture; and statisticians and applied mathematicians use splines as everyday computational tools, often divorced from graphic images.


Topics in Splines and Applications

Topics in Splines and Applications

Author: Young Kinh-Nhue Truong

Publisher: BoD – Books on Demand

Published: 2018-06-06

Total Pages: 162

ISBN-13: 1789232503

DOWNLOAD EBOOK

Splines provide a significant tool for the design of computationally economical curves and surfaces for the construction of various objects like automobiles, ship hulls, airplane fuselages and wings, propeller blades, shoe insoles, bottles, etc. It also contributes in the description of geological, physical, statistical, and even medical phenomena. Spline methods have proven to be indispensable in a variety of modern industries, including computer vision, robotics, signal and image processing, visualization, textile, graphic designs, and even media. This book aims to provide a valuable source on splines and their applications. It focuses on collecting and disseminating information in various disciplines including computer-aided geometric design, computer graphics, data visualization, data fitting, power systems, clinical and epidemiologic studies, disease detection, regression curves, social media, and biological studies. The book is useful for researchers, scientists, practitioners, and many others who seek state-of-the-art techniques and applications using splines. It is also useful for undergraduate senior students as well as graduate students in the areas of computer science, engineering, health science, statistics, and mathematics. Each chapter also provides useful information on software developments and their extensions.


Curve and Surface Fitting with Splines

Curve and Surface Fitting with Splines

Author: Paul Dierckx

Publisher: Oxford University Press

Published: 1995

Total Pages: 308

ISBN-13: 9780198534402

DOWNLOAD EBOOK

The fitting of a curve or surface through a set of observational data is a very frequent problem in different disciplines (mathematics, engineering, medicine, ...) with many interesting applications. This book describes the algorithms and mathematical fundamentals of a widely used software package for data fitting with (tensor product) splines. As such it gives a survey of possibilities and benefits but also of the problems to cope with when approximating with this popular type of function. In particular it is demonstrated in detail how the properties of B-splines can be fully exploited for improving the computational efficiency and for incorporating different boundary or shape preserving constraints. Special attention is also paid to strategies for an automatic and adaptive knot selection with intent to obtain serious data reductions. The practical use of the smoothing software is illustrated with many examples, academic as well as taken from real life.


Fitting Splines to a Parametric Function

Fitting Splines to a Parametric Function

Author: Alvin Penner

Publisher: Springer

Published: 2019-02-23

Total Pages: 79

ISBN-13: 3030125513

DOWNLOAD EBOOK

This Brief investigates the intersections that occur between three different areas of study that normally would not touch each other: ODF, spline theory, and topology. The Least Squares Orthogonal Distance Fitting (ODF) method has become the standard technique used to develop mathematical models of the physical shapes of objects, due to the fact that it produces a fitted result that is invariant with respect to the size and orientation of the object. It is normally used to produce a single optimum fit to a specific object; this work focuses instead on the issue of whether the fit responds continuously as the shape of the object changes. The theory of splines develops user-friendly ways of manipulating six different splines to fit the shape of a simple family of epiTrochoid curves: two types of Bézier curve, two uniform B-splines, and two Beta-splines. This work will focus on issues that arise when mathematically optimizing the fit. There are typically multiple solutions to the ODF method, and the number of solutions can often change as the object changes shape, so two topological questions immediately arise: are there rules that can be applied concerning the relative number of local minima and saddle points, and are there different mechanisms available by which solutions can either merge and disappear, or cross over each other and interchange roles. The author proposes some simple rules which can be used to determine if a given set of solutions is internally consistent in the sense that it has the appropriate number of each type of solution.


Least Squares Cubic Splines

Least Squares Cubic Splines

Author: Victor L. Corbin

Publisher:

Published: 1973

Total Pages: 28

ISBN-13:

DOWNLOAD EBOOK

An important feature of ordinary cubic splines results from the conditions of continuity of the function and its first two derivatives that are improved at each data point. Consequently, this method is not useful with experimental data, which is the sum of the true value of a function and some random noise. The authors have combined the least squares criteria with the spline conditions to obtain a set of equations which allow one to perform least squares curve fitting with cubic splines. (Author).


A Blossoming Development of Splines

A Blossoming Development of Splines

Author: Stephen Mann

Publisher: Morgan & Claypool Publishers

Published: 2006-12-01

Total Pages: 108

ISBN-13: 1598291173

DOWNLOAD EBOOK

In this lecture, we study Bézier and B-spline curves and surfaces, mathematical representations for free-form curves and surfaces that are common in CAD systems and are used to design aircraft and automobiles, as well as in modeling packages used by the computer animation industry. Bézier/B-splines represent polynomials and piecewise polynomials in a geometric manner using sets of control points that define the shape of the surface. The primary analysis tool used in this lecture is blossoming, which gives an elegant labeling of the control points that allows us to analyze their properties geometrically. Blossoming is used to explore both Bézier and B-spline curves, and in particular to investigate continuity properties, change of basis algorithms, forward differencing, B-spline knot multiplicity, and knot insertion algorithms. We also look at triangle diagrams (which are closely related to blossoming), direct manipulation of B-spline curves, NURBS curves, and triangular and tensor product surfaces.


An Introduction to Splines for Use in Computer Graphics and Geometric Modeling

An Introduction to Splines for Use in Computer Graphics and Geometric Modeling

Author: Richard H. Bartels

Publisher: Morgan Kaufmann

Published: 1995-09

Total Pages: 504

ISBN-13: 9781558604001

DOWNLOAD EBOOK

As the field of computer graphics develops, techniques for modeling complex curves and surfaces are increasingly important. A major technique is the use of parametric splines in which a curve is defined by piecing together a succession of curve segments, and surfaces are defined by stitching together a mosaic of surface patches. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling discusses the use of splines from the point of view of the computer scientist. Assuming only a background in beginning calculus, the authors present the material using many examples and illustrations with the goal of building the reader's intuition. Based on courses given at the University of California, Berkeley, and the University of Waterloo, as well as numerous ACM Siggraph tutorials, the book includes the most recent advances in computer-aided geometric modeling and design to make spline modeling techniques generally accessible to the computer graphics and geometric modeling communities.