Compact Projective Planes

Compact Projective Planes

Author: Helmut Salzmann

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 705

ISBN-13: 3110876833

DOWNLOAD EBOOK

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)


Featured Reviews in Mathematical Reviews 1997-1999

Featured Reviews in Mathematical Reviews 1997-1999

Author: Donald G. Babbitt

Publisher: American Mathematical Soc.

Published: 2000-05-05

Total Pages: 762

ISBN-13: 9780821896709

DOWNLOAD EBOOK

This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.


Mostly Finite Geometries

Mostly Finite Geometries

Author: Norman Johnson

Publisher: CRC Press

Published: 1997-05-06

Total Pages: 458

ISBN-13: 9780824700355

DOWNLOAD EBOOK

Based on the proceedings of the conference held at the University of Iowa, in honour and celebration of the mathematician T.G. Ostrom's 80th birthday, this text focuses on finite geometries as well as topological geometries in the infinite case, some of which originate with ideas of finite geometric objects. It includes information about flocks of quadratic cones and related geometric and combinatorial structures.


Geometry — von Staudt’s Point of View

Geometry — von Staudt’s Point of View

Author: P. Plaumann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 434

ISBN-13: 9400984898

DOWNLOAD EBOOK

Proceedings of the NATO Advanced Study Institute, Bad Windesheim, West Germany, July 21-August 1, 1980


A Guide to the Classification Theorem for Compact Surfaces

A Guide to the Classification Theorem for Compact Surfaces

Author: Jean Gallier

Publisher: Springer Science & Business Media

Published: 2013-02-05

Total Pages: 184

ISBN-13: 3642343643

DOWNLOAD EBOOK

This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.


Finite Geometry and Character Theory

Finite Geometry and Character Theory

Author: Alexander Pott

Publisher: Springer

Published: 2006-11-14

Total Pages: 185

ISBN-13: 3540491821

DOWNLOAD EBOOK

Difference sets are of central interest in finite geometry and design theory. One of the main techniques to investigate abelian difference sets is a discrete version of the classical Fourier transform (i.e., character theory) in connection with algebraic number theory. This approach is described using only basic knowledge of algebra and algebraic number theory. It contains not only most of our present knowledge about abelian difference sets, but also gives applications of character theory to projective planes with quasiregular collineation groups. Therefore, the book is of interest both to geometers and mathematicians working on difference sets. Moreover, the Fourier transform is important in more applied branches of discrete mathematics such as coding theory and shift register sequences.