Starting from the basics of semiconductor lasers with emphasis on the generation of high optical output power the reader is introduced in a tutorial way to all key technologies required to fabricate high-power diode-laser sources. Various applications are exemplified.
The development and application of low-dimensional semiconductors have been rapid and spectacular during the past decade. Ever improving epitaxial growth and device fabrication techniques have allowed access to some remarkable new physics in quantum confined structures while a plethora of new devices has emerged. The field of optoelectronics in particular has benefited from these advances both in terms of improved performance and the invention of fundamentally new types of device, at a time when the use of optics and lasers in telecommunications, broadcasting, the Internet, signal processing, and computing has been rapidly expanding. An appreciation of the physics of quantum and dynamic electronic processes in confined structures is key to the understanding of many of the latest devices and their continued development. Semiconductor Quantum Optoelectronics covers new physics and the latest device developments in low-dimensional semiconductors. It allows those who already have some familiarity with semiconductor physics and devices to broaden and expand their knowledge into new and expanding topics in low-dimensional semiconductors. The book provides pedagogical coverage of selected areas of new and pertinent physics of low-dimensional structures and presents some optoelectronic devices presently under development. Coverage includes material and band structure issues and the physics of ultrafast, nonlinear, coherent, intersubband, and intracavity phenomena. The book emphasizes various devices, including quantum wells, visible, quantum cascade, and mode-locked lasers; microcavity LEDs and VCSELs; and detectors and logic elements. An underlying theme is high-speed phenomena and devices for increased system bandwidths.
This book is a stop-gap contribution to the science and technology of carbon plasmas and carbon vapors. It strives to cover two strongly related fields: the molecular quantum theory of carbon plasmas and carbon nanostructures; and the molecular and atomic spectroscopy of such plasmas and vapors. These two fields of research are strongly intertwined and thus reinforce one another.Even though the use of carbon nanostructures is increasing by the day and their practical uses are emerging, there is no modern review on carbon plasmas, especially from molecular theoretical and spectroscopic viewpoints. The importance of the present book is therefore great from both educational and practical aspects. This review might be the first step towards bringing such textbooks into existence for university education. Similarly, for applied and engineering works in carbon nanostructures, the book provides a theoretical salient point for technologists in the field.
This book is motivated by the very favorable reception given to the previous editions as well as by the considerable range of new developments in the laser field since the publication of the third edition in 1989. These new developments include, among others, quantum-well and muitiple-quantum-welliasers, diode-pumped solid-state lasers, new concepts for both stable and unstable resonators, femtosecond lasers, ultra-high-brightness lasers, etc. This edition thus represents a radically revised version of the preceding edition, amounting essentially to a new book in its own right. However, the basic aim has remained the same, namely to provide a broad and unified description of laser behavior at the simplest level which is compatible with a correct physical understanding. The book is therefore intended as a textbook for a senior-level or first-year graduate course and/or as a reference book. The most relevant additions or changes to this edition can be summarized as follows: 1. A much-more detailed description of Amplified Spontaneous Emission has been given (Chapter 2) and a novel simplified treatment of this phenomenon, both for homogeneous and inhomogeneous lines, has been introduced (Appendix C). 2. A major fraction of a new chapter (Chapter 3) is dedicated to the interaction of radiation with semiconductor media, either in a bulk form or in a quantum-confined structure (quantum-well, quantum-wire and quantum dot). 3.