This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.
Symbolic dynamics is essential in the study of dynamical systems of various types and is connected to many other fields such as stochastic processes, ergodic theory, representation of numbers, information and coding, etc. This graduate text introduces symbolic dynamics from a perspective of topological dynamical systems and presents a vast variety of important examples. After introducing symbolic and topological dynamics, the core of the book consists of discussions of various subshifts of positive entropy, of zero entropy, other non-shift minimal action on the Cantor set, and a study of the ergodic properties of these systems. The author presents recent developments such as spacing shifts, square-free shifts, density shifts, $mathcal{B}$-free shifts, Bratteli-Vershik systems, enumeration scales, amorphic complexity, and a modern and complete treatment of kneading theory. Later, he provides an overview of automata and linguistic complexity (Chomsky's hierarchy). The necessary background for the book varies, but for most of it a solid knowledge of real analysis and linear algebra and first courses in probability and measure theory, metric spaces, number theory, topology, and set theory suffice. Most of the exercises have solutions in the back of the book.
Symbolic dynamics is a mature yet rapidly developing area of dynamical systems. It has established strong connections with many areas, including linear algebra, graph theory, probability, group theory, and the theory of computation, as well as data storage, statistical mechanics, and $C^*$-algebras. This Second Edition maintains the introductory character of the original 1995 edition as a general textbook on symbolic dynamics and its applications to coding. It is written at an elementary level and aimed at students, well-established researchers, and experts in mathematics, electrical engineering, and computer science. Topics are carefully developed and motivated with many illustrative examples. There are more than 500 exercises to test the reader's understanding. In addition to a chapter in the First Edition on advanced topics and a comprehensive bibliography, the Second Edition includes a detailed Addendum, with companion bibliography, describing major developments and new research directions since publication of the First Edition.
This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications. Books in the Encyclopedia of Mathematics and its Applications cover their subjects comprehensively. Less important results may be summarised as exercises at the ends of chapters, For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.
Combinatorial Algorithms on Words refers to the collection of manipulations of strings of symbols (words) - not necessarily from a finite alphabet - that exploit the combinatorial properties of the logical/physical input arrangement to achieve efficient computational performances. The model of computation may be any of the established serial paradigms (e.g. RAM's, Turing Machines), or one of the emerging parallel models (e.g. PRAM ,WRAM, Systolic Arrays, CCC). This book focuses on some of the accomplishments of recent years in such disparate areas as pattern matching, data compression, free groups, coding theory, parallel and VLSI computation, and symbolic dynamics; these share a common flavor, yet ltave not been examined together in the past. In addition to being theoretically interest ing, these studies have had significant applications. It happens that these works have all too frequently been carried out in isolation, with contributions addressing similar issues scattered throughout a rather diverse body of literature. We felt that it would be advantageous to both current and future researchers to collect this work in a sin gle reference. It should be clear that the book's emphasis is on aspects of combinatorics and com plexity rather than logic, foundations, and decidability. In view of the large body of research and the degree of unity already achieved by studies in the theory of auto mata and formal languages, we have allocated very little space to them.
This book is devoted to recent developments in symbolic dynamics, and it comprises eight chapters. The first two are concerned with the study of symbolic sequences of 'low complexity', the following two introduce 'high complexity' systems. The later chapters go on to deal with more specialised topics including ergodic theory, number theory, and one-dimensional dynamics.
This book constitutes the refereed proceedings of the 12th International Conference on Combinatorics on Words, WORDS 2019, held in Loughborough, UK, in September 2019. The 21 revised full papers presented in this book together with 5 invited talks were carefully reviewed and selected from 34 submissions. WORDS is the main conference series devoted to the mathematical theory of words. In particular, the combinatorial, algebraic and algorithmic aspects of words are emphasized. Motivations may also come from other domains such as theoretical computer science, bioinformatics, digital geometry, symbolic dynamics, numeration systems, text processing, number theory, etc.