Combinatorics of Permutations

Combinatorics of Permutations

Author: Miklos Bona

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 478

ISBN-13: 1439850526

DOWNLOAD EBOOK

A Unified Account of Permutations in Modern CombinatoricsA 2006 CHOICE Outstanding Academic Title, the first edition of this bestseller was lauded for its detailed yet engaging treatment of permutations. Providing more than enough material for a one-semester course, Combinatorics of Permutations, Second Edition continues to clearly show the usefuln


Combinatorics of Permutations

Combinatorics of Permutations

Author: Miklos Bona

Publisher: CRC Press

Published: 2004-06-25

Total Pages: 400

ISBN-13: 0203494377

DOWNLOAD EBOOK

WINNER of a CHOICE Outstanding Academic Title Award for 2006! As linear orders, as elements of the symmetric group, modeled by matrices, modeled by graphspermutations are omnipresent in modern combinatorics. They are omnipresent but also multifaceted, and while several excellent books explore particular aspects of the subject, no one book h


Permutation Groups and Combinatorial Structures

Permutation Groups and Combinatorial Structures

Author: Norman Biggs

Publisher: Cambridge University Press

Published: 1979-08-16

Total Pages: 153

ISBN-13: 0521222877

DOWNLOAD EBOOK

The subject of this book is the action of permutation groups on sets associated with combinatorial structures. Each chapter deals with a particular structure: groups, geometries, designs, graphs and maps respectively. A unifying theme for the first four chapters is the construction of finite simple groups. In the fifth chapter, a theory of maps on orientable surfaces is developed within a combinatorial framework. This simplifies and extends the existing literature in the field. The book is designed both as a course text and as a reference book for advanced undergraduate and graduate students. A feature is the set of carefully constructed projects, intended to give the reader a deeper understanding of the subject.


Discrete Mathematics

Discrete Mathematics

Author: Oscar Levin

Publisher: Createspace Independent Publishing Platform

Published: 2016-08-16

Total Pages: 342

ISBN-13: 9781534970748

DOWNLOAD EBOOK

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.


Patterns in Permutations and Words

Patterns in Permutations and Words

Author: Sergey Kitaev

Publisher: Springer Science & Business Media

Published: 2011-08-30

Total Pages: 511

ISBN-13: 3642173330

DOWNLOAD EBOOK

There has been considerable interest recently in the subject of patterns in permutations and words, a new branch of combinatorics with its roots in the works of Rotem, Rogers, and Knuth in the 1970s. Consideration of the patterns in question has been extremely interesting from the combinatorial point of view, and it has proved to be a useful language in a variety of seemingly unrelated problems, including the theory of Kazhdan—Lusztig polynomials, singularities of Schubert varieties, interval orders, Chebyshev polynomials, models in statistical mechanics, and various sorting algorithms, including sorting stacks and sortable permutations. The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology. The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology.


Handbook of Enumerative Combinatorics

Handbook of Enumerative Combinatorics

Author: Miklos Bona

Publisher: CRC Press

Published: 2015-03-24

Total Pages: 1073

ISBN-13: 1482220865

DOWNLOAD EBOOK

Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he


Combinatorics: The Art of Counting

Combinatorics: The Art of Counting

Author: Bruce E. Sagan

Publisher: American Mathematical Soc.

Published: 2020-10-16

Total Pages: 328

ISBN-13: 1470460327

DOWNLOAD EBOOK

This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.


Combinatorics: A Very Short Introduction

Combinatorics: A Very Short Introduction

Author: Robin Wilson

Publisher: Oxford University Press

Published: 2016-04-28

Total Pages: 144

ISBN-13: 0191035254

DOWNLOAD EBOOK

How many possible sudoku puzzles are there? In the lottery, what is the chance that two winning balls have consecutive numbers? Who invented Pascal's triangle? (it was not Pascal) Combinatorics, the branch of mathematics concerned with selecting, arranging, and listing or counting collections of objects, works to answer all these questions. Dating back some 3000 years, and initially consisting mainly of the study of permutations and combinations, its scope has broadened to include topics such as graph theory, partitions of numbers, block designs, design of codes, and latin squares. In this Very Short Introduction Robin Wilson gives an overview of the field and its applications in mathematics and computer theory, considering problems from the shortest routes covering certain stops to the minimum number of colours needed to colour a map with different colours for neighbouring countries. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.