Combinatorial Theory

Combinatorial Theory

Author: Martin Aigner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 493

ISBN-13: 3642591019

DOWNLOAD EBOOK

This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen


Combinatorial Theory

Combinatorial Theory

Author: Marshall Hall

Publisher: John Wiley & Sons

Published: 1998-07-16

Total Pages: 464

ISBN-13: 9780471315186

DOWNLOAD EBOOK

Includes proof of van der Waerden's 1926 conjecture on permanents, Wilson's theorem on asymptotic existence, and other developments in combinatorics since 1967. Also covers coding theory and its important connection with designs, problems of enumeration, and partition. Presents fundamentals in addition to latest advances, with illustrative problems at the end of each chapter. Enlarged appendixes include a longer list of block designs.


Combinatorial Game Theory

Combinatorial Game Theory

Author: Aaron N. Siegel

Publisher: American Mathematical Soc.

Published: 2013-08-01

Total Pages: 542

ISBN-13: 082185190X

DOWNLOAD EBOOK

Combinatorial game theory is the study of two-player games with no hidden information and no chance elements. The theory assigns algebraic values to positions in such games and seeks to quantify the algebraic and combinatorial structure of their interactions. Its modern form was introduced thirty years ago, with the publication of the classic Winning Ways for Your Mathematical Plays by Berlekamp, Conway, and Guy, and interest has rapidly increased in recent decades. This book is a comprehensive and up-to-date introduction to the subject, tracing its development from first principles and examples through many of its most recent advances. Roughly half the book is devoted to a rigorous treatment of the classical theory; the remaining material is an in-depth presentation of topics that appear for the first time in textbook form, including the theory of misère quotients and Berlekamp's generalized temperature theory. Packed with hundreds of examples and exercises and meticulously cross-referenced, Combinatorial Game Theory will appeal equally to students, instructors, and research professionals. More than forty open problems and conjectures are mentioned in the text, highlighting the many mysteries that still remain in this young and exciting field. Aaron Siegel holds a Ph.D. in mathematics from the University of California, Berkeley and has held positions at the Mathematical Sciences Research Institute and the Institute for Advanced Study. He was a partner at Berkeley Quantitative, a technology-driven hedge fund, and is presently employed by Twitter, Inc.


Combinatorial Group Theory

Combinatorial Group Theory

Author: Wilhelm Magnus

Publisher: Courier Corporation

Published: 2004-01-01

Total Pages: 466

ISBN-13: 0486438309

DOWNLOAD EBOOK

This seminal, much-cited account begins with a fairly elementary exposition of basic concepts and a discussion of factor groups and subgroups. The topics of Nielsen transformations, free and amalgamated products, and commutator calculus receive detailed treatment. The concluding chapter surveys word, conjugacy, and related problems; adjunction and embedding problems; and more. Second, revised 1976 edition.


Combinatorial Group Theory

Combinatorial Group Theory

Author: Roger C. Lyndon

Publisher: Springer

Published: 2015-03-12

Total Pages: 354

ISBN-13: 3642618960

DOWNLOAD EBOOK

From the reviews: "This book [...] defines the boundaries of the subject now called combinatorial group theory. [...] it is a considerable achievement to have concentrated a survey of the subject into 339 pages. [...] a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews


Classical Topology and Combinatorial Group Theory

Classical Topology and Combinatorial Group Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 1461243726

DOWNLOAD EBOOK

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.


Combinatorial Theory

Combinatorial Theory

Author: Martin Aigner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 489

ISBN-13: 1461566665

DOWNLOAD EBOOK

It is now generally recognized that the field of combinatorics has, over the past years, evolved into a fully-fledged branch of discrete mathematics whose potential with respect to computers and the natural sciences is only beginning to be realized. Still, two points seem to bother most authors: The apparent difficulty in defining the scope of combinatorics and the fact that combinatorics seems to consist of a vast variety of more or less unrelated methods and results. As to the scope of the field, there appears to be a growing consensus that combinatorics should be divided into three large parts: (a) Enumeration, including generating functions, inversion, and calculus of finite differences; (b) Order Theory, including finite posets and lattices, matroids, and existence results such as Hall's and Ramsey's; (c) Configurations, including designs, permutation groups, and coding theory. The present book covers most aspects of parts (a) and (b), but none of (c). The reasons for excluding (c) were twofold. First, there exist several older books on the subject, such as Ryser [1] (which I still think is the most seductive introduction to combinatorics), Hall [2], and more recent ones such as Cameron-Van Lint [1] on groups and designs, and Blake-Mullin [1] on coding theory, whereas no compre hensive book exists on (a) and (b).


A Combinatorial Theory of Possibility

A Combinatorial Theory of Possibility

Author: D. M. Armstrong

Publisher: Cambridge University Press

Published: 1989-09-29

Total Pages: 174

ISBN-13: 9780521377805

DOWNLOAD EBOOK

Preface Part I. Non-Naturalist Theories of Possibility: 1. Causal argument 2. Non-Naturalist theories of possibility Part II. A Combinatorial and Naturalist Account of Possibility: 3. Possibility in a simple world 4. Expanding and contracting the world 5. Relative atoms 6. Are there de re incompatibilities and necessities? 7. Higher-order entities, negation and causation 8. Supervenience 9. Mathematics 10. Final questions: logic Works cited Appendix: Tractarian Nominalism Brian Skyrms Index.