Combinatorial Number Theory and Additive Group Theory

Combinatorial Number Theory and Additive Group Theory

Author: Alfred Geroldinger

Publisher: Springer Science & Business Media

Published: 2009-04-15

Total Pages: 324

ISBN-13: 3764389613

DOWNLOAD EBOOK

Additive combinatorics is a relatively recent term coined to comprehend the developments of the more classical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary additive combinatorics is the interplay of a great variety of mathematical techniques, including combinatorics, harmonic analysis, convex geometry, graph theory, probability theory, algebraic geometry or ergodic theory. This book gathers the contributions of many of the leading researchers in the area and is divided into three parts. The two first parts correspond to the material of the main courses delivered, Additive combinatorics and non-unique factorizations, by Alfred Geroldinger, and Sumsets and structure, by Imre Z. Ruzsa. The third part collects the notes of most of the seminars which accompanied the main courses, and which cover a reasonably large part of the methods, techniques and problems of contemporary additive combinatorics.


Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory

Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory

Author: Mauro Di Nasso

Publisher: Springer

Published: 2019-05-23

Total Pages: 211

ISBN-13: 3030179567

DOWNLOAD EBOOK

The goal of this monograph is to give an accessible introduction to nonstandard methods and their applications, with an emphasis on combinatorics and Ramsey theory. It includes both new nonstandard proofs of classical results and recent developments initially obtained in the nonstandard setting. This makes it the first combinatorics-focused account of nonstandard methods to be aimed at a general (graduate-level) mathematical audience. This book will provide a natural starting point for researchers interested in approaching the rapidly growing literature on combinatorial results obtained via nonstandard methods. The primary audience consists of graduate students and specialists in logic and combinatorics who wish to pursue research at the interface between these areas.


Recurrence in Ergodic Theory and Combinatorial Number Theory

Recurrence in Ergodic Theory and Combinatorial Number Theory

Author: Harry Furstenberg

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 216

ISBN-13: 1400855160

DOWNLOAD EBOOK

Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Combinatorial Group Theory

Combinatorial Group Theory

Author: Roger C. Lyndon

Publisher: Springer

Published: 2015-03-12

Total Pages: 354

ISBN-13: 3642618960

DOWNLOAD EBOOK

From the reviews: "This book [...] defines the boundaries of the subject now called combinatorial group theory. [...] it is a considerable achievement to have concentrated a survey of the subject into 339 pages. [...] a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews


Combinatorial Set Theory

Combinatorial Set Theory

Author: Lorenz J. Halbeisen

Publisher: Springer

Published: 2017-12-20

Total Pages: 586

ISBN-13: 3319602314

DOWNLOAD EBOOK

This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.


Combinatorial Group Theory

Combinatorial Group Theory

Author: Wilhelm Magnus

Publisher: Courier Corporation

Published: 2004-01-01

Total Pages: 466

ISBN-13: 0486438309

DOWNLOAD EBOOK

This seminal, much-cited account begins with a fairly elementary exposition of basic concepts and a discussion of factor groups and subgroups. The topics of Nielsen transformations, free and amalgamated products, and commutator calculus receive detailed treatment. The concluding chapter surveys word, conjugacy, and related problems; adjunction and embedding problems; and more. Second, revised 1976 edition.


Mathematical Problems and Proofs

Mathematical Problems and Proofs

Author: Branislav Kisacanin

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 219

ISBN-13: 0306469634

DOWNLOAD EBOOK

A gentle introduction to the highly sophisticated world of discrete mathematics, Mathematical Problems and Proofs presents topics ranging from elementary definitions and theorems to advanced topics -- such as cardinal numbers, generating functions, properties of Fibonacci numbers, and Euclidean algorithm. This excellent primer illustrates more than 150 solutions and proofs, thoroughly explained in clear language. The generous historical references and anecdotes interspersed throughout the text create interesting intermissions that will fuel readers' eagerness to inquire further about the topics and some of our greatest mathematicians. The author guides readers through the process of solving enigmatic proofs and problems, and assists them in making the transition from problem solving to theorem proving. At once a requisite text and an enjoyable read, Mathematical Problems and Proofs is an excellent entrée to discrete mathematics for advanced students interested in mathematics, engineering, and science.


Combinatorics, Automata and Number Theory

Combinatorics, Automata and Number Theory

Author: Valérie Berthé

Publisher: Cambridge University Press

Published: 2010-08-12

Total Pages: 637

ISBN-13: 0521515971

DOWNLOAD EBOOK

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications. Books in the Encyclopedia of Mathematics and its Applications cover their subjects comprehensively. Less important results may be summarised as exercises at the ends of chapters, For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.


Combinatorial and Additive Number Theory III

Combinatorial and Additive Number Theory III

Author: Melvyn B. Nathanson

Publisher: Springer Nature

Published: 2019-12-10

Total Pages: 237

ISBN-13: 3030311066

DOWNLOAD EBOOK

Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.