Combinatorial Methods in Density Estimation

Combinatorial Methods in Density Estimation

Author: Luc Devroye

Publisher: Springer Science & Business Media

Published: 2001-01-12

Total Pages: 228

ISBN-13: 9780387951171

DOWNLOAD EBOOK

Density estimation has evolved enormously since the days of bar plots and histograms, but researchers and users are still struggling with the problem of the selection of the bin widths. This text explores a new paradigm for the data-based or automatic selection of the free parameters of density estimates in general so that the expected error is within a given constant multiple of the best possible error. The paradigm can be used in nearly all density estimates and for most model selection problems, both parametric and nonparametric. It is the first book on this topic. The text is intended for first-year graduate students in statistics and learning theory, and offers a host of opportunities for further research and thesis topics. Each chapter corresponds roughly to one lecture, and is supplemented with many classroom exercises. A one year course in probability theory at the level of Feller's Volume 1 should be more than adequate preparation. Gabor Lugosi is Professor at Universitat Pompeu Fabra in Barcelona, and Luc Debroye is Professor at McGill University in Montreal. In 1996, the authors, together with Lászlo Györfi, published the successful text, A Probabilistic Theory of Pattern Recognition with Springer-Verlag. Both authors have made many contributions in the area of nonparametric estimation.


Combinatorial Methods in Density Estimation

Combinatorial Methods in Density Estimation

Author: Luc Devroye

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 219

ISBN-13: 1461301254

DOWNLOAD EBOOK

Density estimation has evolved enormously since the days of bar plots and histograms, but researchers and users are still struggling with the problem of the selection of the bin widths. This book is the first to explore a new paradigm for the data-based or automatic selection of the free parameters of density estimates in general so that the expected error is within a given constant multiple of the best possible error. The paradigm can be used in nearly all density estimates and for most model selection problems, both parametric and nonparametric.


Combinatorial Methods in Density Estimation

Combinatorial Methods in Density Estimation

Author: Luc Devroye

Publisher: Springer

Published: 2011-04-26

Total Pages: 224

ISBN-13: 9781461301264

DOWNLOAD EBOOK

Density estimation has evolved enormously since the days of bar plots and histograms, but researchers and users are still struggling with the problem of the selection of the bin widths. This book is the first to explore a new paradigm for the data-based or automatic selection of the free parameters of density estimates in general so that the expected error is within a given constant multiple of the best possible error. The paradigm can be used in nearly all density estimates and for most model selection problems, both parametric and nonparametric.


Exact Statistical Methods for Data Analysis

Exact Statistical Methods for Data Analysis

Author: Samaradasa Weerahandi

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 343

ISBN-13: 1461208254

DOWNLOAD EBOOK

Now available in paperback, this book covers some recent developments in statistical inference. It provides methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.


Permutation Methods

Permutation Methods

Author: Paul W. Jr. Mielke

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 359

ISBN-13: 1475734492

DOWNLOAD EBOOK

The book provides a comprehensive treatment of statistical inference using permutation techniques. It features a variety of useful and powerful data analytic tools that rely on very few distributional assumptions. Although many of these procedures have appeared in journal articles, they are not readily available to practitioners.


Resampling Methods for Dependent Data

Resampling Methods for Dependent Data

Author: S. N. Lahiri

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 382

ISBN-13: 147573803X

DOWNLOAD EBOOK

By giving a detailed account of bootstrap methods and their properties for dependent data, this book provides illustrative numerical examples throughout. The book fills a gap in the literature covering research on re-sampling methods for dependent data that has witnessed vigorous growth over the last two decades but remains scattered in various statistics and econometrics journals. It can be used as a graduate level text and also as a research monograph for statisticians and econometricians.


Stream Data Mining: Algorithms and Their Probabilistic Properties

Stream Data Mining: Algorithms and Their Probabilistic Properties

Author: Leszek Rutkowski

Publisher: Springer

Published: 2019-03-16

Total Pages: 331

ISBN-13: 303013962X

DOWNLOAD EBOOK

This book presents a unique approach to stream data mining. Unlike the vast majority of previous approaches, which are largely based on heuristics, it highlights methods and algorithms that are mathematically justified. First, it describes how to adapt static decision trees to accommodate data streams; in this regard, new splitting criteria are developed to guarantee that they are asymptotically equivalent to the classical batch tree. Moreover, new decision trees are designed, leading to the original concept of hybrid trees. In turn, nonparametric techniques based on Parzen kernels and orthogonal series are employed to address concept drift in the problem of non-stationary regressions and classification in a time-varying environment. Lastly, an extremely challenging problem that involves designing ensembles and automatically choosing their sizes is described and solved. Given its scope, the book is intended for a professional audience of researchers and practitioners who deal with stream data, e.g. in telecommunication, banking, and sensor networks.


Unified Methods for Censored Longitudinal Data and Causality

Unified Methods for Censored Longitudinal Data and Causality

Author: Mark J. van der Laan

Publisher: Springer Science & Business Media

Published: 2012-11-12

Total Pages: 412

ISBN-13: 0387217002

DOWNLOAD EBOOK

A fundamental statistical framework for the analysis of complex longitudinal data is provided in this book. It provides the first comprehensive description of optimal estimation techniques based on time-dependent data structures. The techniques go beyond standard statistical approaches and can be used to teach masters and Ph.D. students. The text is ideally suitable for researchers in statistics with a strong interest in the analysis of complex longitudinal data.


Time Series: Theory and Methods

Time Series: Theory and Methods

Author: Peter J. Brockwell

Publisher: Springer Science & Business Media

Published: 2009-05-13

Total Pages: 591

ISBN-13: 1441903208

DOWNLOAD EBOOK

This edition contains a large number of additions and corrections scattered throughout the text, including the incorporation of a new chapter on state-space models. The companion diskette for the IBM PC has expanded into the software package ITSM: An Interactive Time Series Modelling Package for the PC, which includes a manual and can be ordered from Springer-Verlag. * We are indebted to many readers who have used the book and programs and made suggestions for improvements. Unfortunately there is not enough space to acknowledge all who have contributed in this way; however, special mention must be made of our prize-winning fault-finders, Sid Resnick and F. Pukelsheim. Special mention should also be made of Anthony Brockwell, whose advice and support on computing matters was invaluable in the preparation of the new diskettes. We have been fortunate to work on the new edition in the excellent environments provided by the University of Melbourne and Colorado State University. We thank Duane Boes particularly for his support and encouragement throughout, and the Australian Research Council and National Science Foundation for their support of research related to the new material. We are also indebted to Springer-Verlag for their constant support and assistance in preparing the second edition. Fort Collins, Colorado P. J. BROCKWELL November, 1990 R. A. DAVIS * /TSM: An Interactive Time Series Modelling Package for the PC by P. J. Brockwell and R. A. Davis. ISBN: 0-387-97482-2; 1991.


Monte Carlo Methods in Bayesian Computation

Monte Carlo Methods in Bayesian Computation

Author: Ming-Hui Chen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 399

ISBN-13: 1461212766

DOWNLOAD EBOOK

Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.