Combinatorial Design Theory

Combinatorial Design Theory

Author: C.J. Colbourn

Publisher: Elsevier

Published: 2011-09-22

Total Pages: 483

ISBN-13: 0080872603

DOWNLOAD EBOOK

Combinatorial design theory is a vibrant area of combinatorics, connecting graph theory, number theory, geometry, and algebra with applications in experimental design, coding theory, and numerous applications in computer science.This volume is a collection of forty-one state-of-the-art research articles spanning all of combinatorial design theory. The articles develop new methods for the construction and analysis of designs and related combinatorial configurations; both new theoretical methods, and new computational tools and results, are presented. In particular, they extend the current state of knowledge on Steiner systems, Latin squares, one-factorizations, block designs, graph designs, packings and coverings, and develop recursive and direct constructions.The contributions form an overview of the current diversity of themes in design theory for those peripherally interested, while researchers in the field will find it to be a major collection of research advances. The volume is dedicated to Alex Rosa, who has played a major role in fostering and developing combinatorial design theory.


Combinatorial Designs for Authentication and Secrecy Codes

Combinatorial Designs for Authentication and Secrecy Codes

Author: Michael Huber

Publisher: Now Publishers Inc

Published: 2010

Total Pages: 107

ISBN-13: 1601983581

DOWNLOAD EBOOK

Combinatorial Designs for Authentication and Secrecy Codes is a succinct in-depth review and tutorial of a subject that promises to lead to major advances in computer and communication security. This monograph provides a tutorial on combinatorial designs, which gives an overview of the theory. Furthermore, the application of combinatorial designs to authentication and secrecy codes is described in depth. This close relationship of designs with cryptography and information security was first revealed in Shannon's seminal paper on secrecy systems. We bring together in one source foundational and current contributions concerning design-theoretic constructions and characterizations of authentication and secrecy codes.


Combinatorial Designs

Combinatorial Designs

Author: Douglas Stinson

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 306

ISBN-13: 0387217371

DOWNLOAD EBOOK

Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in combinatorial design theory. The text features clear explanations of basic designs, such as Steiner and Kirkman triple systems, mutual orthogonal Latin squares, finite projective and affine planes, and Steiner quadruple systems. In these settings, the student will master various construction techniques, both classic and modern, and will be well-prepared to construct a vast array of combinatorial designs. Design theory offers a progressive approach to the subject, with carefully ordered results. It begins with simple constructions that gradually increase in complexity. Each design has a construction that contains new ideas or that reinforces and builds upon similar ideas previously introduced. A new text/reference covering all apsects of modern combinatorial design theory. Graduates and professionals in computer science, applied mathematics, combinatorics, and applied statistics will find the book an essential resource.


Designs, Graphs, Codes and their Links

Designs, Graphs, Codes and their Links

Author: P. J. Cameron

Publisher: Cambridge University Press

Published: 1991-09-19

Total Pages: 252

ISBN-13: 9780521423854

DOWNLOAD EBOOK

This book stresses the connection between, and the applications of, design theory to graphs and codes. Beginning with a brief introduction to design theory and the necessary background, the book also provides relevant topics for discussion from the theory of graphs and codes.


Design Theory

Design Theory

Author: Charles C. Lindner

Publisher: CRC Press

Published: 2017-03-27

Total Pages: 265

ISBN-13: 135160645X

DOWNLOAD EBOOK

Design Theory, Second Edition presents some of the most important techniques used for constructing combinatorial designs. It augments the descriptions of the constructions with many figures to help students understand and enjoy this branch of mathematics. This edition now offers a thorough development of the embedding of Latin squares and combinatorial designs. It also presents some pure mathematical ideas, including connections between universal algebra and graph designs. The authors focus on several basic designs, including Steiner triple systems, Latin squares, and finite projective and affine planes. They produce these designs using flexible constructions and then add interesting properties that may be required, such as resolvability, embeddings, and orthogonality. The authors also construct more complicated structures, such as Steiner quadruple systems. By providing both classical and state-of-the-art construction techniques, this book enables students to produce many other types of designs.


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Handbook of Combinatorial Designs

Handbook of Combinatorial Designs

Author: C. J. Colbourn

Publisher: Chapman and Hall/CRC

Published: 2006-11-02

Total Pages: 1016

ISBN-13: 9781584885061

DOWNLOAD EBOOK

Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.


Combinatorial Designs and their Applications

Combinatorial Designs and their Applications

Author: Kathleen Quinn

Publisher: CRC Press

Published: 1999-01-29

Total Pages: 164

ISBN-13: 9780849306594

DOWNLOAD EBOOK

The fruit of a conference that gathered seven very active researchers in the field, Combinatorial Design and their Applications presents a wide but representative range of topics on the non-geometrical aspects of design theory. By concentrating on a few important areas, the authors succeed in providing greater detail in these areas in a more complete and accessible form. Through their contributions to this collection, they help fill a gap in the available combinatorics literature. The papers included in this volume cover recent developments in areas of current interest, such as difference sets, cryptography, and optimal linear codes. Researchers in combinatorics and other areas of pure mathematics, along with researchers in statistics and computer design will find in-depth, up-to-date discussions of design theory and the application of the theory to statistical design, codes, and cryptography.


Algorithms in Combinatorial Design Theory

Algorithms in Combinatorial Design Theory

Author: C.J. Colbourn

Publisher: Elsevier

Published: 1985-01-01

Total Pages: 347

ISBN-13: 0080872255

DOWNLOAD EBOOK

The scope of the volume includes all algorithmic and computational aspects of research on combinatorial designs. Algorithmic aspects include generation, isomorphism and analysis techniques - both heuristic methods used in practice, and the computational complexity of these operations. The scope within design theory includes all aspects of block designs, Latin squares and their variants, pairwise balanced designs and projective planes and related geometries.


Combinatorics and Finite Geometry

Combinatorics and Finite Geometry

Author: Steven T. Dougherty

Publisher: Springer Nature

Published: 2020-10-30

Total Pages: 374

ISBN-13: 3030563952

DOWNLOAD EBOOK

This undergraduate textbook is suitable for introductory classes in combinatorics and related topics. The book covers a wide range of both pure and applied combinatorics, beginning with the very basics of enumeration and then going on to Latin squares, graphs and designs. The latter topic is closely related to finite geometry, which is developed in parallel. Applications to probability theory, algebra, coding theory, cryptology and combinatorial game theory comprise the later chapters. Throughout the book, examples and exercises illustrate the material, and the interrelations between the various topics is emphasized. Readers looking to take first steps toward the study of combinatorics, finite geometry, design theory, coding theory, or cryptology will find this book valuable. Essentially self-contained, there are very few prerequisites aside from some mathematical maturity, and the little algebra required is covered in the text. The book is also a valuable resource for anyone interested in discrete mathematics as it ties together a wide variety of topics.