Combinatorial Algorithms

Combinatorial Algorithms

Author: Donald L. Kreher

Publisher: CRC Press

Published: 1998-12-18

Total Pages: 346

ISBN-13: 9780849339882

DOWNLOAD EBOOK

This textbook thoroughly outlines combinatorial algorithms for generation, enumeration, and search. Topics include backtracking and heuristic search methods applied to various combinatorial structures, such as: Combinations Permutations Graphs Designs Many classical areas are covered as well as new research topics not included in most existing texts, such as: Group algorithms Graph isomorphism Hill-climbing Heuristic search algorithms This work serves as an exceptional textbook for a modern course in combinatorial algorithms, providing a unified and focused collection of recent topics of interest in the area. The authors, synthesizing material that can only be found scattered through many different sources, introduce the most important combinatorial algorithmic techniques - thus creating an accessible, comprehensive text that students of mathematics, electrical engineering, and computer science can understand without needing a prior course on combinatorics.


Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization

Author: Martin Grötschel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 374

ISBN-13: 3642978819

DOWNLOAD EBOOK

Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.


Combinatorial Algorithms for Integrated Circuit Layout

Combinatorial Algorithms for Integrated Circuit Layout

Author:

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 715

ISBN-13: 3322921069

DOWNLOAD EBOOK

The last decade has brought explosive growth in the technology for manufac turing integrated circuits. Integrated circuits with several hundred thousand transistors are now commonplace. This manufacturing capability, combined with the economic benefits of large electronic systems, is forcing a revolution in the design of these systems and providing a challenge to those people in terested in integrated system design. Modern circuits are too complex for an individual to comprehend completely. Managing tremendous complexity and automating the design process have become crucial issues. Two groups are interested in dealing with complexity and in developing algorithms to automate the design process. One group is composed of practi tioners in computer-aided design (CAD) who develop computer programs to aid the circuit-design process. The second group is made up of computer scientists and mathemati'::~l\ns who are interested in the design and analysis of efficient combinatorial aJ::,orithms. These two groups have developed separate bodies of literature and, until recently, have had relatively little interaction. An obstacle to bringing these two groups together is the lack of books that discuss issues of importance to both groups in the same context. There are many instances when a familiarity with the literature of the other group would be beneficial. Some practitioners could use known theoretical results to improve their "cut and try" heuristics. In other cases, theoreticians have published impractical or highly abstracted toy formulations, thinking that the latter are important for circuit layout.


Combinatorial Optimization

Combinatorial Optimization

Author: Bernhard Korte

Publisher: Springer Science & Business Media

Published: 2006-01-27

Total Pages: 596

ISBN-13: 3540292977

DOWNLOAD EBOOK

This well-written textbook on combinatorial optimization puts special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. The book contains complete (but concise) proofs, as well as many deep results, some of which have not appeared in any previous books.


Combinatorial Algorithms

Combinatorial Algorithms

Author: Herbert S. Wilf

Publisher: SIAM

Published: 1989-01-01

Total Pages: 49

ISBN-13: 0898712319

DOWNLOAD EBOOK

Covers key recent advances in combinatorial algorithms.


Combinatorial Algorithms

Combinatorial Algorithms

Author: Paola Flocchini

Publisher: Springer Nature

Published: 2021-06-30

Total Pages: 588

ISBN-13: 3030799875

DOWNLOAD EBOOK

This book constitutes the proceedings of the 32nd International Workshop on Combinatorial Algorithms which was planned to take place in Ottawa, ON, Canada, in July 2021. Due to the COVID-19 pandemic the conference changed to a virtual format. The 38 full papers included in this book together with 2 invited talks were carefully reviewed and selected from 107 submissions. They focus on algorithms design for the myriad of combinatorial problems that underlie computer applications in science, engineering and business. Chapter “Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


Algorithms in Combinatorial Geometry

Algorithms in Combinatorial Geometry

Author: Herbert Edelsbrunner

Publisher: Springer Science & Business Media

Published: 1987-07-31

Total Pages: 446

ISBN-13: 9783540137221

DOWNLOAD EBOOK

Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.


Combinatorial Algorithms on Words

Combinatorial Algorithms on Words

Author: Alberto Apostolico

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 354

ISBN-13: 3642824560

DOWNLOAD EBOOK

Combinatorial Algorithms on Words refers to the collection of manipulations of strings of symbols (words) - not necessarily from a finite alphabet - that exploit the combinatorial properties of the logical/physical input arrangement to achieve efficient computational performances. The model of computation may be any of the established serial paradigms (e.g. RAM's, Turing Machines), or one of the emerging parallel models (e.g. PRAM ,WRAM, Systolic Arrays, CCC). This book focuses on some of the accomplishments of recent years in such disparate areas as pattern matching, data compression, free groups, coding theory, parallel and VLSI computation, and symbolic dynamics; these share a common flavor, yet ltave not been examined together in the past. In addition to being theoretically interest ing, these studies have had significant applications. It happens that these works have all too frequently been carried out in isolation, with contributions addressing similar issues scattered throughout a rather diverse body of literature. We felt that it would be advantageous to both current and future researchers to collect this work in a sin gle reference. It should be clear that the book's emphasis is on aspects of combinatorics and com plexity rather than logic, foundations, and decidability. In view of the large body of research and the degree of unity already achieved by studies in the theory of auto mata and formal languages, we have allocated very little space to them.


Combinatorial Optimization

Combinatorial Optimization

Author: Christos H. Papadimitriou

Publisher: Courier Corporation

Published: 2013-04-26

Total Pages: 530

ISBN-13: 0486320138

DOWNLOAD EBOOK

This graduate-level text considers the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; local search heuristics for NP-complete problems, more. 1982 edition.