A Mathematical Theory of Evidence

A Mathematical Theory of Evidence

Author: Glenn Shafer

Publisher: Princeton University Press

Published: 2020-06-30

Total Pages:

ISBN-13: 0691214697

DOWNLOAD EBOOK

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.


Classic Works of the Dempster-Shafer Theory of Belief Functions

Classic Works of the Dempster-Shafer Theory of Belief Functions

Author: Ronald R. Yager

Publisher: Springer

Published: 2008-01-22

Total Pages: 813

ISBN-13: 354044792X

DOWNLOAD EBOOK

This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.


Combination of Evidence in Dempster-Shafer Theory

Combination of Evidence in Dempster-Shafer Theory

Author: Kari Sentz

Publisher:

Published: 2002

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

Dempster-Shafer theory offers an alternative to traditional probabilistic theory for the mathematical representation of uncertainty. The significant innovation of this framework is that it allows for the allocation of a probability mass to sets or intervals. Dempster-Shafer theory does not require an assumption regarding the probability of the individual constituents of the set or interval. This is a potentially valuable tool for the evaluation of risk and reliability in engineering applications when it is not possible to obtain a precise measurement from experiments, or when knowledge is obtained from expert elicitation. An important aspect of this theory is the combination of evidence obtained from multiple sources and the modeling of conflict between them. This report surveys a number of possible combination rules for Dempster-Shafer structures and provides examples of the implementation of these rules for discrete and interval-valued data.


Belief Functions: Theory and Applications

Belief Functions: Theory and Applications

Author: Thierry Denoeux

Publisher: Springer Science & Business Media

Published: 2012-04-26

Total Pages: 442

ISBN-13: 3642294618

DOWNLOAD EBOOK

The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories. This volume contains the proceedings of the 2nd International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.


Formal Concept Analysis

Formal Concept Analysis

Author: Bernhard Ganter

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 289

ISBN-13: 3642598307

DOWNLOAD EBOOK

This first textbook on formal concept analysis gives a systematic presentation of the mathematical foundations and their relations to applications in computer science, especially in data analysis and knowledge processing. Above all, it presents graphical methods for representing conceptual systems that have proved themselves in communicating knowledge. The mathematical foundations are treated thoroughly and are illuminated by means of numerous examples, making the basic theory readily accessible in compact form.


Subjective Logic

Subjective Logic

Author: Audun Jøsang

Publisher: Springer

Published: 2016-10-27

Total Pages: 355

ISBN-13: 3319423371

DOWNLOAD EBOOK

This is the first comprehensive treatment of subjective logic and all its operations. The author developed the approach, and in this book he first explains subjective opinions, opinion representation, and decision-making under vagueness and uncertainty, and he then offers a full definition of subjective logic, harmonising the key notations and formalisms, concluding with chapters on trust networks and subjective Bayesian networks, which when combined form general subjective networks. The author shows how real-world situations can be realistically modelled with regard to how situations are perceived, with conclusions that more correctly reflect the ignorance and uncertainties that result from partially uncertain input arguments. The book will help researchers and practitioners to advance, improve and apply subjective logic to build powerful artificial reasoning models and tools for solving real-world problems. A good grounding in discrete mathematics is a prerequisite.


Probabilistic Reasoning in Intelligent Systems

Probabilistic Reasoning in Intelligent Systems

Author: Judea Pearl

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 573

ISBN-13: 0080514898

DOWNLOAD EBOOK

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.


Uncertainty-Based Information

Uncertainty-Based Information

Author: George Klir

Publisher: Springer Science & Business Media

Published: 1999-10-19

Total Pages: 196

ISBN-13: 9783790812428

DOWNLOAD EBOOK

Information is precious. It reduces our uncertainty in making decisions. Knowledge about the outcome of an uncertain event gives the possessor an advantage. It changes the course of lives, nations, and history itself. Information is the food of Maxwell's demon. His power comes from know ing which particles are hot and which particles are cold. His existence was paradoxical to classical physics and only the realization that information too was a source of power led to his taming. Information has recently become a commodity, traded and sold like or ange juice or hog bellies. Colleges give degrees in information science and information management. Technology of the computer age has provided access to information in overwhelming quantity. Information has become something worth studying in its own right. The purpose of this volume is to introduce key developments and results in the area of generalized information theory, a theory that deals with uncertainty-based information within mathematical frameworks that are broader than classical set theory and probability theory. The volume is organized as follows.


Advances in Civil Engineering II

Advances in Civil Engineering II

Author: Xiang Dong Zhang

Publisher: Trans Tech Publications Ltd

Published: 2012-12-13

Total Pages: 3183

ISBN-13: 3038139467

DOWNLOAD EBOOK

Selected, peer reviewed papers from the 2nd International Conference on Civil Engineering and Transportation (ICCET 2012), October 27-28, 2012, Guilin, China