Color-Induced Graph Colorings

Color-Induced Graph Colorings

Author: Ping Zhang

Publisher: Springer

Published: 2015-08-10

Total Pages: 130

ISBN-13: 3319203940

DOWNLOAD EBOOK

A comprehensive treatment of color-induced graph colorings is presented in this book, emphasizing vertex colorings induced by edge colorings. The coloring concepts described in this book depend not only on the property required of the initial edge coloring and the kind of objects serving as colors, but also on the property demanded of the vertex coloring produced. For each edge coloring introduced, background for the concept is provided, followed by a presentation of results and open questions dealing with this topic. While the edge colorings discussed can be either proper or unrestricted, the resulting vertex colorings are either proper colorings or rainbow colorings. This gives rise to a discussion of irregular colorings, strong colorings, modular colorings, edge-graceful colorings, twin edge colorings and binomial colorings. Since many of the concepts described in this book are relatively recent, the audience for this book is primarily mathematicians interested in learning some new areas of graph colorings as well as researchers and graduate students in the mathematics community, especially the graph theory community.


Distributed Graph Coloring

Distributed Graph Coloring

Author: Leonid Barenboim

Publisher: Morgan & Claypool Publishers

Published: 2013-07-01

Total Pages: 173

ISBN-13: 1627050191

DOWNLOAD EBOOK

The objective of our monograph is to cover the developments on the theoretical foundations of distributed symmetry breaking in the message-passing model. We hope that our monograph will stimulate further progress in this exciting area.


Graph Coloring Problems

Graph Coloring Problems

Author: Tommy R. Jensen

Publisher: John Wiley & Sons

Published: 2011-10-24

Total Pages: 320

ISBN-13: 1118030745

DOWNLOAD EBOOK

Contains a wealth of information previously scattered in research journals, conference proceedings and technical reports. Identifies more than 200 unsolved problems. Every problem is stated in a self-contained, extremely accessible format, followed by comments on its history, related results and literature. The book will stimulate research and help avoid efforts on solving already settled problems. Each chapter concludes with a comprehensive list of references which will lead readers to original sources, important contributions and other surveys.


Chromatic Graph Theory

Chromatic Graph Theory

Author: Gary Chartrand

Publisher: CRC Press

Published: 2019-11-28

Total Pages: 503

ISBN-13: 0429798288

DOWNLOAD EBOOK

With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition


Algorithms - ESA 2007

Algorithms - ESA 2007

Author: Lars Arge

Publisher: Springer

Published: 2007-09-17

Total Pages: 782

ISBN-13: 3540755209

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 15th Annual European Symposium on Algorithms, ESA 2007, held in Eilat, Israel, in October 2007 in the context of the combined conference ALGO 2007. The 63 revised full papers presented together with abstracts of three invited lectures address all current subjects in algorithmics reaching from design and analysis issues of algorithms over to real-world applications and engineering of algorithms in various fields.


Distributed Graph Coloring

Distributed Graph Coloring

Author: Leonid Barenboim

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 157

ISBN-13: 303102009X

DOWNLOAD EBOOK

The focus of this monograph is on symmetry breaking problems in the message-passing model of distributed computing. In this model a communication network is represented by a n-vertex graph G = (V,E), whose vertices host autonomous processors. The processors communicate over the edges of G in discrete rounds. The goal is to devise algorithms that use as few rounds as possible. A typical symmetry-breaking problem is the problem of graph coloring. Denote by ? the maximum degree of G. While coloring G with ? + 1 colors is trivial in the centralized setting, the problem becomes much more challenging in the distributed one. One can also compromise on the number of colors, if this allows for more efficient algorithms. Other typical symmetry-breaking problems are the problems of computing a maximal independent set (MIS) and a maximal matching (MM). The study of these problems dates back to the very early days of distributed computing. The founding fathers of distributed computing laid firm foundations for the area of distributed symmetry breaking already in the eighties. In particular, they showed that all these problems can be solved in randomized logarithmic time. Also, Linial showed that an O(?2)-coloring can be solved very efficiently deterministically. However, fundamental questions were left open for decades. In particular, it is not known if the MIS or the (? + 1)-coloring can be solved in deterministic polylogarithmic time. Moreover, until recently it was not known if in deterministic polylogarithmic time one can color a graph with significantly fewer than ?2 colors. Additionally, it was open (and still open to some extent) if one can have sublogarithmic randomized algorithms for the symmetry breaking problems. Recently, significant progress was achieved in the study of these questions. More efficient deterministic and randomized (? + 1)-coloring algorithms were achieved. Deterministic ?1 + o(1)-coloring algorithms with polylogarithmic running time were devised. Improved (and often sublogarithmic-time) randomized algorithms were devised. Drastically improved lower bounds were given. Wide families of graphs in which these problems are solvable much faster than on general graphs were identified. The objective of our monograph is to cover most of these developments, and as a result to provide a treatise on theoretical foundations of distributed symmetry breaking in the message-passing model. We hope that our monograph will stimulate further progress in this exciting area.


Handbook of Combinatorial Optimization

Handbook of Combinatorial Optimization

Author: Ding-Zhu Du

Publisher: Springer Science & Business Media

Published: 2006-08-18

Total Pages: 395

ISBN-13: 0387238301

DOWNLOAD EBOOK

This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.


Graph Edge Coloring

Graph Edge Coloring

Author: Michael Stiebitz

Publisher: John Wiley & Sons

Published: 2012-02-27

Total Pages: 344

ISBN-13: 1118205561

DOWNLOAD EBOOK

Features recent advances and new applications in graph edgecoloring Reviewing recent advances in the Edge Coloring Problem, GraphEdge Coloring: Vizing's Theorem and Goldberg's Conjectureprovides an overview of the current state of the science,explaining the interconnections among the results obtained fromimportant graph theory studies. The authors introduce many newimproved proofs of known results to identify and point to possiblesolutions for open problems in edge coloring. The book begins with an introduction to graph theory and theconcept of edge coloring. Subsequent chapters explore importanttopics such as: Use of Tashkinov trees to obtain an asymptotic positive solutionto Goldberg's conjecture Application of Vizing fans to obtain both known and newresults Kierstead paths as an alternative to Vizing fans Classification problem of simple graphs Generalized edge coloring in which a color may appear more thanonce at a vertex This book also features first-time English translations of twogroundbreaking papers written by Vadim Vizing on an estimate of thechromatic class of a p-graph and the critical graphs within a givenchromatic class. Written by leading experts who have reinvigorated research inthe field, Graph Edge Coloring is an excellent book formathematics, optimization, and computer science courses at thegraduate level. The book also serves as a valuable reference forresearchers interested in discrete mathematics, graph theory,operations research, theoretical computer science, andcombinatorial optimization.


A Kaleidoscopic View of Graph Colorings

A Kaleidoscopic View of Graph Colorings

Author: Ping Zhang

Publisher: Springer

Published: 2016-03-30

Total Pages: 160

ISBN-13: 3319305182

DOWNLOAD EBOOK

This book describes kaleidoscopic topics that have developed in the area of graph colorings. Unifying current material on graph coloring, this book describes current information on vertex and edge colorings in graph theory, including harmonious colorings, majestic colorings, kaleidoscopic colorings and binomial colorings. Recently there have been a number of breakthroughs in vertex colorings that give rise to other colorings in a graph, such as graceful labelings of graphs that have been reconsidered under the language of colorings. The topics presented in this book include sample detailed proofs and illustrations, which depicts elements that are often overlooked. This book is ideal for graduate students and researchers in graph theory, as it covers a broad range of topics and makes connections between recent developments and well-known areas in graph theory.


Every Planar Map is Four Colorable

Every Planar Map is Four Colorable

Author: Kenneth I. Appel

Publisher: American Mathematical Soc.

Published: 1989

Total Pages: 760

ISBN-13: 0821851039

DOWNLOAD EBOOK

In this volume, the authors present their 1972 proof of the celebrated Four Color Theorem in a detailed but self-contained exposition accessible to a general mathematical audience. An emended version of the authors' proof of the theorem, the book contains the full text of the supplements and checklists, which originally appeared on microfiche. The thiry-page introduction, intended for nonspecialists, provides some historical background of the theorem and details of the authors' proof. In addition, the authors have added an appendix which treats in much greater detail the argument for situations in which reducible configurations are immersed rather than embedded in triangulations. This result leads to a proof that four coloring can be accomplished in polynomial time.