An Introduction to the Atomic and Radiation Physics of Plasmas

An Introduction to the Atomic and Radiation Physics of Plasmas

Author: G. J. Tallents

Publisher: Cambridge University Press

Published: 2018-02-22

Total Pages: 313

ISBN-13: 1108318010

DOWNLOAD EBOOK

Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.


Atomic Spectroscopy and Radiative Processes

Atomic Spectroscopy and Radiative Processes

Author: Egidio Landi Degl'Innocenti

Publisher: Springer

Published: 2014-06-24

Total Pages: 432

ISBN-13: 8847028086

DOWNLOAD EBOOK

This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.


Modern Methods in Collisional-Radiative Modeling of Plasmas

Modern Methods in Collisional-Radiative Modeling of Plasmas

Author: Yuri Ralchenko

Publisher: Springer

Published: 2016-02-25

Total Pages: 220

ISBN-13: 3319275143

DOWNLOAD EBOOK

This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It will be a useful and practical guide for students and experienced researchers working in plasma spectroscopy, spectra simulations, and related fields.


Radiative Processes in Astrophysics

Radiative Processes in Astrophysics

Author: George B. Rybicki

Publisher: John Wiley & Sons

Published: 2008-09-26

Total Pages: 402

ISBN-13: 352761818X

DOWNLOAD EBOOK

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.


Atomic and Molecular Radiative Processes

Atomic and Molecular Radiative Processes

Author: Vladimir Krainov

Publisher: Springer

Published: 2019-07-03

Total Pages: 282

ISBN-13: 3030219550

DOWNLOAD EBOOK

This book describes selected problems in contemporary spectroscopy in the context of quantum mechanics and statistical physics. It focuses on elementary radiative processes involving atomic particles (atoms, molecules, ions), which include radiative transitions between discrete atomic states, the photoionization of atoms, photorecombination of electrons and ions, bremsstrahlung, photodissociation of molecules, and photoattachment of electrons to atoms. In addition to these processes, the transport of resonant radiation in atomic gases and propagation of infrared radiation in molecular gases are also considered. The book subsequently addresses applied problems such as optical pumping, cooling of gases via laser resonance radiation, light-induced drift of gas atoms, photoresonant plasma, reflection of radio waves from the ionosphere, and detection of submillimeter radiation using Rydberg atoms. Lastly, topical examples in atmospheric and climate change science are presented, such as lightning channel glowing, emission of the solar photosphere, and the greenhouse phenomenon in the atmospheres of the Earth and Venus. Along with researchers, both graduate and undergraduate students in atomic, molecular and atmospheric physics will find this book a useful and timely guide.


Atomic Properties in Hot Plasmas

Atomic Properties in Hot Plasmas

Author: Jacques Bauche

Publisher: Springer

Published: 2015-08-03

Total Pages: 386

ISBN-13: 3319181475

DOWNLOAD EBOOK

This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurations, superconfigurations, and ions; charge-state distributions; radiative power losses and opacity. There are many numerical examples and comparisons with experiment presented throughout the book. The plasma properties described in this book are especially relevant to large nuclear fusion facilities such as the NIF (California) and the ITER (France), and to astrophysics. Methods relevant to the central-field configurational model are described in detail in the appendices: tensor-operator techniques, second-quantization formalism, statistical distribution moments, and the algebra of partition functions. Some extra tools are propensity laws, correlations, and fractals. These methods are applied to the analytical derivation of many properties, specially the global ones, through which the complexity is much reduced. The book is intended for graduate-level students, and for physicists working in the field.


Atomic and Ionic Spectra and Elementary Processes in Plasma

Atomic and Ionic Spectra and Elementary Processes in Plasma

Author: Igorʹ Ilʹich Sobelʹman

Publisher: Nova Publishers

Published: 1992

Total Pages: 188

ISBN-13: 9781560720713

DOWNLOAD EBOOK

Eight highly technical studies explore a wide range of problems involved in investigating the short wavelength emission of the solar corona. The topics include the experimental results from solar X-ray investigations, the calculated excitation cross-sections for collisions of atoms and ions with charged particles, and spectra of plasmas. Annotation


Progress in Atomic Spectroscopy

Progress in Atomic Spectroscopy

Author: W. Hanle

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 645

ISBN-13: 1461326478

DOWNLOAD EBOOK

H. J. BEYER AND H. KLEINPOPPEN During the preparation of Parts A and B of Progress in Atomic Spectros copy a few years ago, it soon became obvious that a comprehensive review and description of this field of modern atomic physics could not be achieved within the limitations of a two-volume book. While it was possible to include a large variety of spectroscopic methods, inevitably some fields had to be cut short or left out altogether. Other fields have developed so rapidly that they demand full cover in an additional volume. One of the major problems, already encountered during the prepar ation of the first volumes, was to keep track of new developments and approaches which result in spectroscopic data. We have to look far beyond the area of traditional atomic spectroscopy since methods of atomic and ion collision physics, nuclear physics, and even particle physics all make important contributions to our knowledge of the static and dynamical state of atoms and ions, and thereby greatly add to the continuing fascination of a field of research which has given us so much fundamental knowledge since the middle of the last century. In this volume, we have tried to strike a balance between contribu tions belonging to the more established fields of atomic structure and spectroscopy and those fields where atomic spectroscopy overlaps with other areas.


Atomic Astrophysics and Spectroscopy

Atomic Astrophysics and Spectroscopy

Author: Anil K. Pradhan

Publisher: Cambridge University Press

Published: 2011-01-06

Total Pages: 376

ISBN-13: 113949497X

DOWNLOAD EBOOK

Spectroscopy enables the precise study of astronomical objects and phenomena. Bridging the gap between physics and astronomy, this is the first integrated graduate-level textbook on atomic astrophysics. It covers the basics of atomic physics and astrophysics, including state-of-the-art research applications, methods and tools. The content is evenly balanced between the physical foundations of spectroscopy and their applications to astronomical objects and cosmology. An undergraduate knowledge of physics is assumed, and relevant basic material is summarized at the beginning of each chapter. The material is completely self-contained and features sufficient background information for self-study. Advanced users will find it handy for spectroscopic studies. A website hosted by the authors contains updates, corrections, exercises and solutions, as well as news items from physics and astronomy related to spectroscopy. A link to this can be found at www.cambridge.org/9780521825368.


The Theory of Atomic Structure and Spectra

The Theory of Atomic Structure and Spectra

Author: Robert D. Cowan

Publisher: Univ of California Press

Published: 2023-11-15

Total Pages: 752

ISBN-13: 0520906152

DOWNLOAD EBOOK

Both the interpretation of atomic spectra and the application of atomic spectroscopy to current problems in astrophysics, laser physics, and thermonuclear plasmas require a thorough knowledge of the Slater-Condon theory of atomic structure and spectra. This book gathers together aspects of the theory that are widely scattered in the literature and augments them to produce a coherent set of closed-form equations suitable both for computer calculations on cases of arbitrary complexity and for hand calculations for very simple cases.