Collective Excitations in Solids

Collective Excitations in Solids

Author: Baldassare Di Bartolo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 717

ISBN-13: 1468488783

DOWNLOAD EBOOK

This book presents an ac count of the NATO Advanced Study Institute on "Collective Excitations in Solids," held in Erice, Italy, from June 15 to June 29, 1981. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The objective of the Institute was to formulate a unified and coherent treatment of various collective excitation processes by drawing on the current advances in various branches of the physics of the solid state. A total of 74 participants came from 54 laboratories and 20 nations (Australia, Belgium, Burma, Canada, China, France, F. R. Germany, Greece, Israel, Italy, Mexico, The Netherlands, Pakistan, Poland, Portugal, Romania, Switzerland, Turkey, The Uni ted Kingdom, and The United States). The secretaries of the course were: Joseph Danko for the scientific aspects and Nino La Francesca for the administrative aspects of the meeting. Fourty-four lectures divided in eleven series were given. Nine "long" seminars and eight "short" seminars were also presented. In addition, two round-table discussions were held.


Spectroscopy and Dynamics of Collective Excitations in Solids

Spectroscopy and Dynamics of Collective Excitations in Solids

Author: Baldassare di Bartolo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 678

ISBN-13: 1461558352

DOWNLOAD EBOOK

This book presents the proceedings of the course "Spectroscopy and Dynamics of Collective Excitations in Solids" held in Erice, Italy from June 17 to July 1, 1995. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present and discuss physical models, mathematical formalisms, experimental techniques and applications relevant to the subject of collective excitations in solids. By bringing together specialists in the field of solid state spectroscopy, this course provided a much needed forum for the critical assessment and evaluation of recent and past developments in the physics of solids. A total of 83 participants came from 57 laboratories and 20 different countries (Austria, Belgium, Brazil, Denmark, Finland, France, Germany, Greece, Israel, Italy, Japan, The Netherlands, Norway, Portugal, Russia, Spain, Switzerland, Turkey, the United Kingdom, and the United States). The secretaries of the course were Stamatios K yrkos and Daniel Di Bartolo. 45 lectures divided in 13 series were given. In addition 8 (one or two-hour) "long seminars," 1 "special lecture," 2 interdisciplinary lectures, 29 "short seminars," and 16 posters were presented. The sequence of lectures was in accordance with the logical development of the subject of the meeting. Each lecturer started at a rather fundamental level and ultimately reached the frontier of knowledge in the field.


Nonequilibrium Dynamics of Collective Excitations in Quantum Materials

Nonequilibrium Dynamics of Collective Excitations in Quantum Materials

Author: Edoardo Baldini

Publisher: Springer

Published: 2018-03-28

Total Pages: 360

ISBN-13: 3319774980

DOWNLOAD EBOOK

This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.


Many-Body Approach to Electronic Excitations

Many-Body Approach to Electronic Excitations

Author: Friedhelm Bechstedt

Publisher: Springer

Published: 2014-12-01

Total Pages: 596

ISBN-13: 366244593X

DOWNLOAD EBOOK

The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computational and experimental results. Some numerical implementations available in well-known computer codes are critically discussed. The book is divided into four parts: (i) In the first part the many-electron systems are described in the framework of the quantum-field theory. The electron spin and the spin-orbit interaction are taken into account. Sum rules are derived. (ii) The second part is mainly related to the ground state of electronic systems. The total energy is treated within the density functional theory. The most important approximations for exchange and correlation are delighted. (iii) The third part is essentially devoted to the description of charged electronic excitations such as electrons and holes. Central approximations as Hedin's GW and the T-matrix approximation are discussed.(iv) The fourth part is focused on response functions measured in optical and loss spectroscopies and neutral pair or collective excitations.


Functional Integrals and Collective Excitations

Functional Integrals and Collective Excitations

Author: Victor Nikolaevich Popov

Publisher: Cambridge University Press

Published: 1987

Total Pages: 240

ISBN-13: 9780521407878

DOWNLOAD EBOOK

This book describes the theory and selected applications of one of the most important mathematical tools used in the theoretical investigation of collective excitations in statistical physics, such as occur in superfluidity, superconductivity, plasma dynamics, superradiation, and in phase transitions.


Density Waves In Solids

Density Waves In Solids

Author: George Gruner

Publisher: CRC Press

Published: 2018-03-08

Total Pages: 288

ISBN-13: 0429969562

DOWNLOAD EBOOK

?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.


Electronic Excitations at Metal Surfaces

Electronic Excitations at Metal Surfaces

Author: Ansgar Liebsch

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 347

ISBN-13: 1475751079

DOWNLOAD EBOOK

In this new work, the focus is on the dynamical response of metal electrons to several types of incident electromagnetic fields. The author, an eminent theorist, discusses Time-Dependent Local Density Approximation's importance in both elucidating electronic surface excitations and describing the ground state properties of electronic systems. Chapters detail theoretical formulations and computational procedures, covering such areas as single-particle and collective modes, spatial distribution of the induced surface charges, and local electric fields. Excitation spectra are shown for a variety of clean simple metals, noble metals, chemisorbed overlayers, charged surfaces, and small metal particles.


Semiconductor Quantum Dots

Semiconductor Quantum Dots

Author: Y. Masumoto

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 500

ISBN-13: 3662050013

DOWNLOAD EBOOK

Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.


Surface Modes in Physics

Surface Modes in Physics

Author: Bo E. Sernelius

Publisher: John Wiley & Sons

Published: 2011-04-27

Total Pages: 370

ISBN-13: 352763505X

DOWNLOAD EBOOK

Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids. This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The author concentrates in finding out the basic origin of the force and how they are developed from the collective excitations of the solids. Different materials are treated, e.g. metals, semiconductors, plasmas, liquids and gases all with different collective modes. In close relation to the theoretical background, the reader is served with a broad field of applications. The book serves readers who are concerned with applications to real world problems with a deep knowledge on surface modes, and inspires new developments of the field.