Collective Dynamics of Particles

Collective Dynamics of Particles

Author: Cristian Marchioli

Publisher: Springer

Published: 2017-02-21

Total Pages: 134

ISBN-13: 3319512269

DOWNLOAD EBOOK

The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.


Brownian Agents and Active Particles

Brownian Agents and Active Particles

Author: Frank Schweitzer

Publisher: Springer Science & Business Media

Published: 2007-08-31

Total Pages: 427

ISBN-13: 3540738444

DOWNLOAD EBOOK

This book lays out a vision for a coherent framework for understanding complex systems. By developing the genuine idea of Brownian agents, the author combines concepts from informatics, such as multiagent systems, with approaches of statistical many-particle physics. It demonstrates that Brownian agent models can be successfully applied in many different contexts, ranging from physicochemical pattern formation to swarming in biological systems.


Dynamics and Analysis of Alignment Models of Collective Behavior

Dynamics and Analysis of Alignment Models of Collective Behavior

Author: Roman Shvydkoy

Publisher: Springer Nature

Published: 2021-05-13

Total Pages: 208

ISBN-13: 3030681475

DOWNLOAD EBOOK

This book introduces a class of alignment models based on the so-called Cucker-Smale system as well as its kinetic and hydrodynamic counterparts. Cutting edge research in the area of collective behavior is presented, including emerging techniques from fluid mechanics, fractional analysis, and kinetic theory. Analytical aspects are highlighted throughout, such as regularity theory and long time behavior of solutions. Featuring open problems, readers will be motivated to apply these breakthrough methods to future research. The chapters offer an overview of state of the art research with introductions to core concepts. Chapter One introduces the central focus of the book: The agent-based Cucker-Smale system. Further agent-based systems and alignment systems are covered in chapters Two and Three. Following this are chapters covering the kinetic and hydrodynamic variants of the Cucker-Smale system. The core well-posedness theory of both smooth and singular models is then presented. Chapter Eight discusses the fully developed one-dimensional theory. The final chapter presents some of the known partial results concerning the regularity of multidimensional Euler Alignment systems. Dynamics and Analysis of Alignment Models of Collective Behavior is ideal for graduate students and researchers studying PDEs, especially those interested in the active areas of collective behavior and alignment models.


Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences

Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences

Author: Giovanni Naldi

Publisher: Springer Science & Business Media

Published: 2010-08-12

Total Pages: 437

ISBN-13: 0817649468

DOWNLOAD EBOOK

Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.


Collective Dynamics from Bacteria to Crowds

Collective Dynamics from Bacteria to Crowds

Author: Adrian Muntean

Publisher: Springer

Published: 2014-04-08

Total Pages: 0

ISBN-13: 9783709117842

DOWNLOAD EBOOK

Multiscale models in social applications combine mean-field and kinetic equations with either microscopic or macroscopic level descriptions. In this book the reader will find not only a wide spectrum of multiscale analysis results (like convergence proofs), but also practically important information such as derivations of mean-field equations, methods to handle hard contacts numerically, to model group behavior, to quantitative estimate microscopic/macroscopic segregation of competing species, to quantitative understand the limits of validity of mass-action kinetics for simple reactions.


Dynamics of Magnetically Trapped Particles

Dynamics of Magnetically Trapped Particles

Author: Juan G. Roederer

Publisher: Springer Science & Business Media

Published: 2013-12-13

Total Pages: 209

ISBN-13: 364241530X

DOWNLOAD EBOOK

This book is a new edition of Roederer’s classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles’ collective “macroscopic” behavior in general planetary environments. Emphasis is not on the “what” but on the “why” of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of different types of plasma current systems and their self-organizing character via the magnetic field. The ultimate aim is to help both graduate students and interested scientists to successfully face the theoretical and experimental challenges lying ahead in space physics in view of recent and upcoming satellite missions and an expected wealth of data on radiation belts and plasmas.


A Physical Introduction to Suspension Dynamics

A Physical Introduction to Suspension Dynamics

Author: Élisabeth Guazzelli

Publisher: Cambridge University Press

Published: 2011-11-24

Total Pages: 256

ISBN-13: 9780521193191

DOWNLOAD EBOOK

Understanding the behavior of particles suspended in a fluid has many important applications across a range of fields, including engineering and geophysics. Comprising two main parts, this book begins with the well-developed theory of particles in viscous fluids, i.e. microhydrodynamics, particularly for single- and pair-body dynamics. Part II considers many-body dynamics, covering shear flows and sedimentation, bulk flow properties and collective phenomena. An interlude between the two parts provides the basic statistical techniques needed to employ the results of the first (microscopic) in the second (macroscopic). The authors introduce theoretical, mathematical concepts through concrete examples, making the material accessible to non-mathematicians. They also include some of the many open questions in the field to encourage further study. Consequently, this is an ideal introduction for students and researchers from other disciplines who are approaching suspension dynamics for the first time.


The Fluid Dynamics of Cell Motility

The Fluid Dynamics of Cell Motility

Author: Eric Lauga

Publisher: Cambridge University Press

Published: 2020-11-05

Total Pages: 391

ISBN-13: 1107174651

DOWNLOAD EBOOK

A pedagogical review of the mathematical modelling in fluid dynamics necessary to understand the motility of most microorganisms on Earth.


Nuclear Collective Motion

Nuclear Collective Motion

Author: David J. Rowe

Publisher: World Scientific

Published: 2010

Total Pages: 373

ISBN-13: 9812790640

DOWNLOAD EBOOK

The two most important developments in nuclear physics were the shell model and the collective model. The former gives the formal framework for a description of nuclei in terms of interacting neutrons and protons. The latter provides a very physical but phenomenological framework for interpreting the observed properties of nuclei. A third approach, based on variational and mean-field methods, brings these two perspectives together in terms of the so-called unified models. Together, these three approaches provide the foundations on which nuclear physics is based. They need to be understood by everyone practicing or teaching nuclear physics, and all those who wish to gain an understanding of the foundations of the models and their relationships to microscopic theory as given by recent developments in terms of dynamical symmetries. This book provides a simple presentation of the models and theory of nuclear collective structure, with an emphasis on the physical content and the ways they are used to interpret data. Part 1 presents the basic phenomenological collective vibrational and rotational models as introduced by Bohr and Mottelson and their many colleagues. It also describes the extensions of these models to parallel unified models in which neutrons and protons move in a mean-field with collective degrees of freedom. Part 2 presents the predominant theories used to describe the collective properties of nuclei in terms of interacting nucleons. These theories, which are shared with other many-body systems, are shown to emerge naturally from the unified models of Part 1.


Collective Electrodynamics

Collective Electrodynamics

Author: Carver A. Mead

Publisher: MIT Press

Published: 2002-07-26

Total Pages: 162

ISBN-13: 9780262632607

DOWNLOAD EBOOK

In this book Carver Mead offers a radically new approach to the standard problems of electromagnetic theory. Motivated by the belief that the goal of scientific research should be the simplification and unification of knowledge, he describes a new way of doing electrodynamics—collective electrodynamics—that does not rely on Maxwell's equations, but rather uses the quantum nature of matter as its sole basis. Collective electrodynamics is a way of looking at how electrons interact, based on experiments that tell us about the electrons directly. (As Mead points out, Maxwell had no access to these experiments.) The results Mead derives for standard electromagnetic problems are identical to those found in any text. Collective electrodynamics reveals, however, that quantities that we usually think of as being very different are, in fact, the same—that electromagnetic phenomena are simple and direct manifestations of quantum phenomena. Mead views his approach as a first step toward reformulating quantum concepts in a clear and comprehensible manner. The book is divided into five sections: magnetic interaction of steady currents, propagating waves, electromagnetic energy, radiation in free space, and electromagnetic interaction of atoms. In an engaging preface, Mead tells how his approach to electromagnetic theory was inspired by his interaction with Richard Feynman.