The automotive industry is experiencing a significant technological shift, driven by electrification, connectivity, intelligence, sharing, and the trend towards “software-defined cars.” With this transformation, the traditional car cabin is evolving into a digital, intelligent, and mobile smart terminal that prioritizes passenger-centric design and data fusion. The design of in-car interaction has become essential in creating engaging, emotional, and humanized user experiences. Future success for traditional car manufacturers lies in developing effective communication methods and context for the intelligent car cabin while addressing relevant issues.
Human-Machine Systems Design and Evaluation Methodology for Intelligent Vehicles examines the fields of designing and developing intelligent design and intelligent vehicle driving evaluation by using virtual reality, augmented reality, and other technologies. The book explains the methodologies and systems of interactive design, user evaluation and testing using virtual reality technology and augmented reality technology in intelligent cockpit design. With the rising prominence of electric vehicles and automatic driving (assisted) technology, intelligent vehicles are becoming a reality. Compared to traditional interactive design, artificial intelligence provides new opportunities and challenges for the interactive design of intelligent cockpit space, especially under the condition of intelligent assisted driving, the driver's behavior performance, multimodal interactive display interface design and evaluation. - Focuses on the interactive design methods of intelligent vehicles, as well as forward-looking design and testing methods of intelligent vehicle design - Emphasizes that interactive design should be carried out using the relevant elements of intelligent system in the design of intelligent cars: starting from the interactive characteristics of intelligence itself - Starts from AI interactive design and combines the field of cognitive science to develop the methods and technologies of vehicle borne equipment and collaborative human-computer interaction design - Includes design cases from the intelligent car interaction design laboratory of Tongji University and related scientific research projects in China.
Man-Machine-Environment System Engineering: Proceedings of the 23rd Conference on MMESE are an academic showcase of the best papers selected from more than 500 submissions, introducing readers to the top research topics and the latest developmental trends in the theory and application of MMESE. This proceedings are interdisciplinary studies on the concepts and methods of physiology, psychology, system engineering, computer science, environment science, management, education, and other related disciplines. Researchers and professionals who study an interdisciplinary subject crossing above disciplines or researchers on MMESE subject will be mainly benefited from this proceedings. MMESE primarily focuses on the relationship between Man, Machine and Environment, studying the optimum combination of man-machine-environment systems. In this system, “Man” refers to working people as the subject in the workplace (e.g. operators, decision-makers); “Machine” is the general name for any object controlled by Man (including tools, machinery, computers, systems and technologies), and “Environment” describes the specific working conditions under which Man and Machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization of the man-machine-environment systems are to ensure safety, efficiency and economy. The integrated and advanced science research topic Man-Machine-Environment System Engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: “You have created a very important modern science and technology in China!”
As ubiquitous as the atmosphere, intelligent adaptive systems (IASs) surround us in our daily lives. When designed well, these systems sense users and their environments so that they can provide support in a manner that is not only responsive to the evolving situation, but unnoticed by the user. A synthesis of recent research and developments on IASs from the human factors (HF) and human–computer interaction (HCI) domains, Intelligent Adaptive Systems: An Interaction-Centered Design Perspective provides integrated design guidance and recommendations for researchers and system developers. The book explores a recognized lack of integration between the HF and HCI research communities, which has led to inconsistencies between the research approaches adopted, and a lack of exploitation of research from one field by the other. The authors integrate theories and methodologies from these domains to provide design recommendations for human–machine developers. They then establish design guidance through the review of conceptual frameworks, analytical methodologies, and design processes for intelligent adaptive systems. The book draws on case studies from the military, medical, and distance learning domains to illustrate intelligent system design to examine lessons learned. Outlining an interaction-centered perspective for designing an IAS, the book details methodologies for understanding human work in complex environments and offers understanding about why and how optimizing human–machine interaction should be central to the design of IASs. The authors present an analytical and design methodology as well as an implementation strategy that helps you choose the proper design framework for your needs.
Why this book? Simply because it is due. Cognitive automation and its system-ergonomic introduction into work systems have been advanced in the meantime to such a degree that already applications for operational work systems are slowly becoming reality. This book shall contribute to give system designers some more guidelines about designing work systems and associated cognitive machines effectively, in particular those related to guidance and control of manned and unmanned vehicles. The issue is that the findings on cognition have to become sufficient commonsense for all from the various disciplines involved in system design, and that guidelines are given how to make use of it in an appropriate and systematic manner. These guidelines are to account for both the needs of the human operator in the work process and the use of computational potentials to make the work system a really most effective one. In other words, this book is meant to provide guidelines for the organisational and technical design of work systems. Therefore, this book is an interdisciplinary one. Findings in individual disciplines are not the main issue. It is rather the combination of these findings for the sake of the performance of work systems which makes this book a useful one for designers who are interested in this modern approach and its implementation.
Proceedings of the AHFE International Conference on Human Factors in Design, Engineering, and Computing (AHFE 2023 Hawaii Edition), Honolulu, Hawaii, USA 4-6, December 2023