Mathematics Going Forward

Mathematics Going Forward

Author: Jean-Michel Morel

Publisher: Springer Nature

Published: 2023-06-14

Total Pages: 629

ISBN-13: 3031122445

DOWNLOAD EBOOK

This volume is an original collection of articles by 44 leading mathematicians on the theme of the future of the discipline. The contributions range from musings on the future of specific fields, to analyses of the history of the discipline, to discussions of open problems and conjectures, including first solutions of unresolved problems. Interestingly, the topics do not cover all of mathematics, but only those deemed most worthy to reflect on for future generations. These topics encompass the most active parts of pure and applied mathematics, including algebraic geometry, probability, logic, optimization, finance, topology, partial differential equations, category theory, number theory, differential geometry, dynamical systems, artificial intelligence, theory of groups, mathematical physics and statistics.


Algebraic Homotopy

Algebraic Homotopy

Author: Hans J. Baues

Publisher: Cambridge University Press

Published: 1989-02-16

Total Pages: 490

ISBN-13: 0521333768

DOWNLOAD EBOOK

This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.


Arithmetic Duality Theorems

Arithmetic Duality Theorems

Author: J. S. Milne

Publisher:

Published: 1986

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

Here, published for the first time, are the complete proofs of the fundamental arithmetic duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry. The text covers these theorems in Galois cohomology, ,tale cohomology, and flat cohomology and addresses applications in the above areas. The writing is expository and the book will serve as an invaluable reference text as well as an excellent introduction to the subject.


Hilbert's Fifth Problem and Related Topics

Hilbert's Fifth Problem and Related Topics

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2014-07-18

Total Pages: 354

ISBN-13: 147041564X

DOWNLOAD EBOOK

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.


Problems on Mapping Class Groups and Related Topics

Problems on Mapping Class Groups and Related Topics

Author: Benson Farb

Publisher: American Mathematical Soc.

Published: 2006-09-12

Total Pages: 384

ISBN-13: 0821838385

DOWNLOAD EBOOK

The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.


Nilpotence and Periodicity in Stable Homotopy Theory

Nilpotence and Periodicity in Stable Homotopy Theory

Author: Douglas C. Ravenel

Publisher: Princeton University Press

Published: 1992-11-08

Total Pages: 228

ISBN-13: 9780691025728

DOWNLOAD EBOOK

Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.


Profinite Semigroups and Symbolic Dynamics

Profinite Semigroups and Symbolic Dynamics

Author: Jorge Almeida

Publisher: Springer Nature

Published: 2020-09-10

Total Pages: 278

ISBN-13: 3030552152

DOWNLOAD EBOOK

This book describes the relation between profinite semigroups and symbolic dynamics. Profinite semigroups are topological semigroups which are compact and residually finite. In particular, free profinite semigroups can be seen as the completion of free semigroups with respect to the profinite metric. In this metric, two words are close if one needs a morphism on a large finite monoid to distinguish them. The main focus is on a natural correspondence between minimal shift spaces (closed shift-invariant sets of two-sided infinite words) and maximal J-classes (certain subsets of free profinite semigroups). This correspondence sheds light on many aspects of both profinite semigroups and symbolic dynamics. For example, the return words to a given word in a shift space can be related to the generators of the group of the corresponding J-class. The book is aimed at researchers and graduate students in mathematics or theoretical computer science.


A Guide to NIP Theories

A Guide to NIP Theories

Author: Pierre Simon

Publisher: Cambridge University Press

Published: 2015-07-16

Total Pages: 165

ISBN-13: 1107057752

DOWNLOAD EBOOK

The first book to introduce the rapidly developing subject of NIP theories, for students and researchers in model theory.


Tree Automata and Languages

Tree Automata and Languages

Author: M. Nivat

Publisher: North Holland

Published: 1992-11-08

Total Pages: 506

ISBN-13:

DOWNLOAD EBOOK

The theory of tree languages, founded in the late Sixties and still active in the Seventies, was much less active during the Eighties. Now there is a simultaneous revival in several countries, with a number of significant results proved in the past five years. A large proportion of them appear in the present volume. The editors of this volume suggested that the authors should write comprehensive half-survey papers. This collection is therefore useful for everyone interested in the theory of tree languages as it covers most of the recent questions which are not treated in the very few rather old standard books on the subject. Trees appear naturally in many chapters of computer science and each new property is likely to result in improvement of some computational solution of a real problem in handling logical formulae, data structures, programming languages on systems, algorithms etc. The point of view adopted here is to put emphasis on the properties themselves and their rigorous mathematical exposition rather than on the many possible applications. This volume is a useful source of concepts and methods which may be applied successfully in many situations: its philosophy is very close to the whole philosophy of the ESPRIT Basic Research Actions and to that of the European Association for Theoretical Computer Science.