The last few years have witnessed rapid advancements in information and coding theory research and applications. This book provides a comprehensive guide to selected topics, both ongoing and emerging, in information and coding theory. Consisting of contributions from well-known and high-profile researchers in their respective specialties, topics that are covered include source coding; channel capacity; linear complexity; code construction, existence and analysis; bounds on codes and designs; space-time coding; LDPC codes; and codes and cryptography.All of the chapters are integrated in a manner that renders the book as a supplementary reference volume or textbook for use in both undergraduate and graduate courses on information and coding theory. As such, it will be a valuable text for students at both undergraduate and graduate levels as well as instructors, researchers, engineers, and practitioners in these fields.Supporting Powerpoint Slides are available upon request for all instructors who adopt this book as a course text.
The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.
An Introduction to Algebraic and Combinatorial Coding Theory focuses on the principles, operations, and approaches involved in the combinatorial coding theory, including linear transformations, chain groups, vector spaces, and combinatorial constructions. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on quadratic residues and codes, self-dual and quasicyclic codes, balanced incomplete block designs and codes, polynomial approach to coding, and linear transformations of vector spaces over finite fields. The text then examines coding and combinatorics, including chains and chain groups, equidistant codes, matroids, graphs, and coding, matroids, and dual chain groups. The manuscript also ponders on Möbius inversion formula, Lucas's theorem, and Mathieu groups. The publication is a valuable source of information for mathematicians and researchers interested in the combinatorial coding theory.
The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
Containing data on number theory, encryption schemes, and cyclic codes, this highly successful textbook, proven by the authors in a popular two-quarter course, presents coding theory, construction, encoding, and decoding of specific code families in an "easy-to-use" manner appropriate for students with only a basic background in mathematics offering revised and updated material on the Berlekamp-Massey decoding algorithm and convolutional codes. Introducing the mathematics as it is needed and providing exercises with solutions, this edition includes an extensive section on cryptography, designed for an introductory course on the subject.
Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.
One of the most important key technologies for digital communication systems as well as storage media is coding theory. It provides a means to transmit information across time and space over noisy and unreliable communication channels. Coding Theory: Algorithms, Architectures and Applications provides a concise overview of channel coding theory and practice, as well as the accompanying signal processing architectures. The book is unique in presenting algorithms, architectures, and applications of coding theory in a unified framework. It covers the basics of coding theory before moving on to discuss algebraic linear block and cyclic codes, turbo codes and low density parity check codes and space-time codes. Coding Theory provides algorithms and architectures used for implementing coding and decoding strategies as well as coding schemes used in practice especially in communication systems. Feature of the book include: Unique presentation-like style for summarising main aspects Practical issues for implementation of coding techniques Sound theoretical approach to practical, relevant coding methodologies Covers standard coding schemes such as block and convolutional codes, coding schemes such as Turbo and LDPC codes, and space time codes currently in research, all covered in a common framework with respect to their applications. This book is ideal for postgraduate and undergraduate students of communication and information engineering, as well as computer science students. It will also be of use to engineers working in the industry who want to know more about the theoretical basics of coding theory and their application in currently relevant communication systems
This book deals with the basic subjects of design theory. It begins with balanced incomplete block designs, various constructions of which are described in ample detail. In particular, finite projective and affine planes, difference sets and Hadamard matrices, as tools to construct balanced incomplete block designs, are included. Orthogonal latin squares are also treated in detail. Zhu's simpler proof of the falsity of Euler's conjecture is included. The construction of some classes of balanced incomplete block designs, such as Steiner triple systems and Kirkman triple systems, are also given. T-designs and partially balanced incomplete block designs (together with association schemes), as generalizations of balanced incomplete block designs, are included. Some coding theory related to Steiner triple systems are clearly explained. The book is written in a lucid style and is algebraic in nature. It can be used as a text or a reference book for graduate students and researchers in combinatorics and applied mathematics. It is also suitable for self-study.
Although its roots lie in information theory, the applications of coding theory now extend to statistics, cryptography, and many areas of pure mathematics, as well as pervading large parts of theoretical computer science, from universal hashing to numerical integration. Introduction to Coding Theory introduces the theory of error-correcting codes in a thorough but gentle presentation. Part I begins with basic concepts, then builds from binary linear codes and Reed-Solomon codes to universal hashing, asymptotic results, and 3-dimensional codes. Part II emphasizes cyclic codes, applications, and the geometric desciption of codes. The author takes a unique, more natural approach to cyclic codes that is not couched in ring theory but by virtue of its simplicity, leads to far-reaching generalizations. Throughout the book, his discussions are packed with applications that include, but reach well beyond, data transmission, with each one introduced as soon as the codes are developed. Although designed as an undergraduate text with myriad exercises, lists of key topics, and chapter summaries, Introduction to Coding Theory explores enough advanced topics to hold equal value as a graduate text and professional reference. Mastering the contents of this book brings a complete understanding of the theory of cyclic codes, including their various applications and the Euclidean algorithm decoding of BCH-codes, and carries readers to the level of the most recent research.