Code Simplicity

Code Simplicity

Author: Max Kanat-Alexander

Publisher: "O'Reilly Media, Inc."

Published: 2012-03-23

Total Pages: 85

ISBN-13: 1449334695

DOWNLOAD EBOOK

Good software design is simple and easy to understand. Unfortunately, the average computer program today is so complex that no one could possibly comprehend how all the code works. This concise guide helps you understand the fundamentals of good design through scientific laws—principles you can apply to any programming language or project from here to eternity. Whether you’re a junior programmer, senior software engineer, or non-technical manager, you’ll learn how to create a sound plan for your software project, and make better decisions about the pattern and structure of your system. Discover why good software design has become the missing science Understand the ultimate purpose of software and the goals of good design Determine the value of your design now and in the future Examine real-world examples that demonstrate how a system changes over time Create designs that allow for the most change in the environment with the least change in the software Make easier changes in the future by keeping your code simpler now Gain better knowledge of your software’s behavior with more accurate tests


Think Complexity

Think Complexity

Author: Allen B. Downey

Publisher: "O'Reilly Media, Inc."

Published: 2012-02-23

Total Pages: 159

ISBN-13: 1449331696

DOWNLOAD EBOOK

Expand your Python skills by working with data structures and algorithms in a refreshing context—through an eye-opening exploration of complexity science. Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations. You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise. Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tables Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines Get starter code and solutions to help you re-implement and extend original experiments in complexity Explore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topics Examine case studies of complex systems submitted by students and readers


Complexity-Aware High Efficiency Video Coding

Complexity-Aware High Efficiency Video Coding

Author: Guilherme Corrêa

Publisher: Springer

Published: 2015-12-29

Total Pages: 246

ISBN-13: 3319257781

DOWNLOAD EBOOK

This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity. Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard. The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that employs the best complexity reduction and scaling methods presented throughout the book. The methods presented in this book are especially useful in power-constrained, portable multimedia devices to reduce energy consumption and to extend battery life. They can also be applied to portable and non-portable multimedia devices operating in real time with limited computational resources.


Making Software

Making Software

Author: Andy Oram

Publisher: "O'Reilly Media, Inc."

Published: 2010-10-14

Total Pages: 624

ISBN-13: 144939776X

DOWNLOAD EBOOK

Many claims are made about how certain tools, technologies, and practices improve software development. But which claims are verifiable, and which are merely wishful thinking? In this book, leading thinkers such as Steve McConnell, Barry Boehm, and Barbara Kitchenham offer essays that uncover the truth and unmask myths commonly held among the software development community. Their insights may surprise you. Are some programmers really ten times more productive than others? Does writing tests first help you develop better code faster? Can code metrics predict the number of bugs in a piece of software? Do design patterns actually make better software? What effect does personality have on pair programming? What matters more: how far apart people are geographically, or how far apart they are in the org chart? Contributors include: Jorge Aranda Tom Ball Victor R. Basili Andrew Begel Christian Bird Barry Boehm Marcelo Cataldo Steven Clarke Jason Cohen Robert DeLine Madeline Diep Hakan Erdogmus Michael Godfrey Mark Guzdial Jo E. Hannay Ahmed E. Hassan Israel Herraiz Kim Sebastian Herzig Cory Kapser Barbara Kitchenham Andrew Ko Lucas Layman Steve McConnell Tim Menzies Gail Murphy Nachi Nagappan Thomas J. Ostrand Dewayne Perry Marian Petre Lutz Prechelt Rahul Premraj Forrest Shull Beth Simon Diomidis Spinellis Neil Thomas Walter Tichy Burak Turhan Elaine J. Weyuker Michele A. Whitecraft Laurie Williams Wendy M. Williams Andreas Zeller Thomas Zimmermann


The Art of Clean Code

The Art of Clean Code

Author: Christian Mayer

Publisher: No Starch Press

Published: 2022-08-02

Total Pages: 177

ISBN-13: 1718502184

DOWNLOAD EBOOK

Learn eight principles to simplify your code and become a more effective (and successful) programmer. Most software developers waste thousands of hours working with overly complex code. The eight core principles in The Art of Clean Coding will teach you how to write clear, maintainable code without compromising functionality. The book’s guiding principle is simplicity: reduce and simplify, then reinvest energy in the important parts to save you countless hours and ease the often onerous task of code maintenance. Bestselling author Christian Mayer leverages his experience helping thousands perfect their coding skills in this new book. With expert advice and real-world examples, he’ll show you how to: Concentrate on the important stuff with the 80/20 principle -- focus on the 20% of your code that matters most Avoid coding in isolation: create a minimum viable product to get early feedback Write code cleanly and simply to eliminate clutter Avoid premature optimization that risks over-complicating code Balance your goals, capacity, and feedback to achieve the productive state of Flow Apply the Do One Thing Well philosophy to vastly improve functionality Design efficient user interfaces with the Less is More principle Tie your new skills together into one unifying principle: Focus The Python-based The Art of Clean Coding is suitable for programmers at any level, with ideas presented in a language-agnostic manner.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Time Complexity Analysis

Time Complexity Analysis

Author: Ue Kiao

Publisher:

Published: 2021-08-29

Total Pages: 163

ISBN-13:

DOWNLOAD EBOOK

This book "Time Complexity Analysis" introduces you to the basics of Time Complexity notations, meaning of the Complexity values and How to analyze various Algorithmic problems. This book includes Time and Space Complexity cheat sheets at the end as a bonus resource. We have tackled several significant problems and demonstrated the approach to analyze them and arrived at the Time and Space Complexity of the problems and Algorithms. This is a MUST-READ book for all Computer Science students and Programmers. Do not miss this opportunity. You will get a better idea to judge which approach will work better and will be able to make better judgements in your development work. See the "Table of content" to get the list of exciting topics you will learn about. Some of the key points you will understand: Random Access Memory does not take O(1) time. It is complicated and in general, has a Time Complexity of O(√N). Multiplication takes O(N^2) time, but the most optimal Algorithm (developed in 2019) takes O(N logN) time which is believed to be the theoretical limit. As per Time Complexity, finding the largest element and the i-th largest element takes the same order of time. It is recommended that you go through this book twice. First time, you may skip the minute details that you may not understand at first go and get the overview. In the second reading, you will get all the ideas, and this will strengthen your insights. In 1950s, Computing was not a Science. It was a collective effort by several Computer Scientists such as Robert Tarjan and Philippe Flajolet who analyzed several computational problems to demonstrate that Computation Problems are equally complicated as Physics and Mathematics Problems. The ideas captured in this book include some of these analyses which glorified Computer Science and made it a Scientific field. Book: Time Complexity Analysis Authors: Aditya Chatterjee; Ue Kiao, PhD. Contributors (7): Vansh Pratap Singh, Shreya Shah, Vikram Shishupalsingh Bais, Mallika Dey, Siddhant Rao, Shweta Bhardwaj, K. Sai Drishya. Table of content: 1. Introduction to Time and Space Complexity (+ different notations) 2. How to calculate Time Complexity? 3. Meaning of different Time Complexity 4. Brief Background on NP and P 5. Does O(1) time exist?: Cost of accessing Memory 6. Time Complexity of Basic Arithmetic Operations 6.1. Bitwise operations 6.2. Addition 6.3. Subtraction 6.4. Multiplication 6.5. Division 7. Analysis of Array 8. Analysis of Dynamic Array 9. Find largest element 10. Find Second largest element 11. Find i-th largest element 12. Time Complexity Bound for comparison-based sorting 12.1. Analysis of Selection Sort 12.2. Analysis of Insertion Sort 12.3. Analysis of Bubble Sort 12.4. Analysis of Quick Sort 13. Bound for non-comparison-based sorting 13.1. Analysis of Counting Sort 13.2. Analysis of Bucket Sort 14. Analysis of Linked List 15. Analysis of Hash functions 16. Analysis of Binary Search 17. Time and Space Complexity Cheat Sheets There is no other book that cover these topics. Many students have several misconceptions which are resolved with the book. Read this book and level up.


A Logical Approach to Discrete Math

A Logical Approach to Discrete Math

Author: David Gries

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 517

ISBN-13: 1475738374

DOWNLOAD EBOOK

Here, the authors strive to change the way logic and discrete math are taught in computer science and mathematics: while many books treat logic simply as another topic of study, this one is unique in its willingness to go one step further. The book traets logic as a basic tool which may be applied in essentially every other area.


Software Design X-Rays

Software Design X-Rays

Author: Adam Tornhill

Publisher: Pragmatic Bookshelf

Published: 2018-03-08

Total Pages: 356

ISBN-13: 1680505807

DOWNLOAD EBOOK

Are you working on a codebase where cost overruns, death marches, and heroic fights with legacy code monsters are the norm? Battle these adversaries with novel ways to identify and prioritize technical debt, based on behavioral data from how developers work with code. And that's just for starters. Because good code involves social design, as well as technical design, you can find surprising dependencies between people and code to resolve coordination bottlenecks among teams. Best of all, the techniques build on behavioral data that you already have: your version-control system. Join the fight for better code! Use statistics and data science to uncover both problematic code and the behavioral patterns of the developers who build your software. This combination gives you insights you can't get from the code alone. Use these insights to prioritize refactoring needs, measure their effect, find implicit dependencies between different modules, and automatically create knowledge maps of your system based on actual code contributions. In a radical, much-needed change from common practice, guide organizational decisions with objective data by measuring how well your development teams align with the software architecture. Discover a comprehensive set of practical analysis techniques based on version-control data, where each point is illustrated with a case study from a real-world codebase. Because the techniques are language neutral, you can apply them to your own code no matter what programming language you use. Guide organizational decisions with objective data by measuring how well your development teams align with the software architecture. Apply research findings from social psychology to software development, ensuring you get the tools you need to coach your organization towards better code. If you're an experienced programmer, software architect, or technical manager, you'll get a new perspective that will change how you work with code. What You Need: You don't have to install anything to follow along in the book. TThe case studies in the book use well-known open source projects hosted on GitHub. You'll use CodeScene, a free software analysis tool for open source projects, for the case studies. We also discuss alternative tooling options where they exist.