Advanced Error Control Techniques for Data Storage Systems

Advanced Error Control Techniques for Data Storage Systems

Author: Erozan M. Kurtas

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 288

ISBN-13: 1420036491

DOWNLOAD EBOOK

With the massive amount of data produced and stored each year, reliable storage and retrieval of information is more crucial than ever. Robust coding and decoding techniques are critical for correcting errors and maintaining data integrity. Comprising chapters thoughtfully selected from the highly popular Coding and Signal Processing for Magnetic Recording Systems, Advanced Error Control Techniques for Data Storage Systems is a finely focused reference to the state-of-the-art error control and modulation techniques used in storage devices. The book begins with an introduction to error control codes, explaining the theory and basic concepts underlying the codes. Building on these concepts, the discussion turns to modulation codes, paying special attention to run-length limited sequences, followed by maximum transition run (MTR) and spectrum shaping codes. It examines the relationship between constrained codes and error control and correction systems from both code-design and architectural perspectives as well as techniques based on convolution codes. With a focus on increasing data density, the book also explores multi-track systems, soft decision decoding, and iteratively decodable codes such as Low-Density Parity-Check (LDPC) Codes, Turbo codes, and Turbo Product Codes. Advanced Error Control Techniques for Data Storage Systems offers a comprehensive collection of theory and techniques that is ideal for specialists working in the field of data storage systems.


Network Coding and Subspace Designs

Network Coding and Subspace Designs

Author: Marcus Greferath

Publisher: Springer

Published: 2018-01-29

Total Pages: 443

ISBN-13: 3319702939

DOWNLOAD EBOOK

This book, written by experts from universities and major research laboratories, addresses the hot topic of network coding, a powerful scheme for information transmission in networks that yields near-optimal throughput. It introduces readers to this striking new approach to network coding, in which the network is not simply viewed as a mechanism for delivering packets, but rather an algebraic structure named the subspace, which these packets span. This leads to a new kind of coding theory, employing what are called subspace codes. The book presents selected, highly relevant advanced research output on: Subspace Codes and Rank Metric Codes; Finite Geometries and Subspace Designs; Application of Network Coding; Codes for Distributed Storage Systems. The outcomes reflect research conducted within the framework of the European COST Action IC1104: Random Network Coding and Designs over GF(q). Taken together, they offer communications engineers, R&D engineers, researchers and graduate students in Mathematics, Computer Science, and Electrical Engineering a comprehensive reference guide to the construction of optimal network codes, as well as efficient encoding and decoding schemes for a given network code.


Coding for Optical Channels

Coding for Optical Channels

Author: Ivan Djordjevic

Publisher: Springer Science & Business Media

Published: 2010-04-05

Total Pages: 454

ISBN-13: 1441955690

DOWNLOAD EBOOK

In order to adapt to the ever-increasing demands of telecommunication needs, today’s network operators are implementing 100 Gb/s per dense wavelength division multiplexing (DWDM) channel transmission. At those data rates, the performance of fiberoptic communication systems is degraded significantly due to intra- and inter-channel fiber nonlinearities, polarization-mode dispersion (PMD), and chromatic dispersion. In order to deal with those channel impairments, novel advanced techniques in modulation and detection, coding and signal processing are needed. This unique book represents a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory with the fundamentals of optical communication.


Coding and Signal Processing for Magnetic Recording Systems

Coding and Signal Processing for Magnetic Recording Systems

Author: Bane Vasic

Publisher: CRC Press

Published: 2004-11-09

Total Pages: 742

ISBN-13: 0203490312

DOWNLOAD EBOOK

Implementing new architectures and designs for the magnetic recording read channel have been pushed to the limits of modern integrated circuit manufacturing technology. This book reviews advanced coding and signal processing techniques and architectures for magnetic recording systems. Beginning with the basic principles, it examines read/write operations, data organization, head positioning, sensing, timing recovery, data detection, and error correction. It also provides an in-depth treatment of all recording channel subsystems inside a read channel and hard disk drive controller. The final section reviews new trends in coding, particularly emerging codes for recording channels.


Code Design for Dependable Systems

Code Design for Dependable Systems

Author: Eiji Fujiwara

Publisher: John Wiley & Sons

Published: 2006-05-26

Total Pages: 718

ISBN-13: 047179273X

DOWNLOAD EBOOK

Theoretical and practical tools to master matrix code design strategy and technique Error correcting and detecting codes are essential to improving system reliability and have popularly been applied to computer systems and communication systems. Coding theory has been studied mainly using the code generator polynomials; hence, the codes are sometimes called polynomial codes. On the other hand, the codes designed by parity check matrices are referred to in this book as matrix codes. This timely book focuses on the design theory for matrix codes and their practical applications for the improvement of system reliability. As the author effectively demonstrates, matrix codes are far more flexible than polynomial codes, as they are capable of expressing various types of code functions. In contrast to other coding theory publications, this one does not burden its readers with unnecessary polynomial algebra, but rather focuses on the essentials needed to understand and take full advantage of matrix code constructions and designs. Readers are presented with a full array of theoretical and practical tools to master the fine points of matrix code design strategy and technique: * Code designs are presented in relation to practical applications, such as high-speed semiconductor memories, mass memories of disks and tapes, logic circuits and systems, data entry systems, and distributed storage systems * New classes of matrix codes, such as error locating codes, spotty byte error control codes, and unequal error control codes, are introduced along with their applications * A new parallel decoding algorithm of the burst error control codes is demonstrated In addition to the treatment of matrix codes, the author provides readers with a general overview of the latest developments and advances in the field of code design. Examples, figures, and exercises are fully provided in each chapter to illustrate concepts and engage the reader in designing actual code and solving real problems. The matrix codes presented with practical parameter settings will be very useful for practicing engineers and researchers. References lead to additional material so readers can explore advanced topics in depth. Engineers, researchers, and designers involved in dependable system design and code design research will find the unique focus and perspective of this practical guide and reference helpful in finding solutions to many key industry problems. It also can serve as a coursebook for graduate and advanced undergraduate students.


Memory Mass Storage

Memory Mass Storage

Author: Giovanni Campardo

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 498

ISBN-13: 3642147526

DOWNLOAD EBOOK

Memory Mass Storage describes the fundamental storage technologies, like Semiconductor, Magnetic, Optical and Uncommon, detailing the main technical characteristics of the storage devices. It deals not only with semiconductor and hard disk memory, but also with different ways to manufacture and assembly them, and with their application to meet market requirements. It also provides an introduction to the epistemological issues arising in defining the process of remembering, as well as an overview on human memory, and an interesting excursus about biological memories and their organization, to better understand how the best memory we have, our brain, is able to imagine and design memory.


Sequences and the de Bruijn Graph

Sequences and the de Bruijn Graph

Author: Tuvi Etzion

Publisher: Elsevier

Published: 2024-05-01

Total Pages: 484

ISBN-13: 0443135185

DOWNLOAD EBOOK

The de Bruijn graph was defined in 1949 to enumerate the number of closed sequences where each n-tuple appears exactly once as a window in a sequence. Through the years, the graph and its sequences have found numerous applications – in space technology, wireless communication, cryptography, parallel computation, genome assembly, DNA storage, and microbiome research, among others. Sequences and the de Bruijn Graph: Properties, Constructions, and Applications explores the foundations of theoretical mathematical concepts and the important applications to computer science, electrical engineering, and bioinformatics. The book introduces the various concepts, ideas, and techniques associated with the use of the de Bruijn Graph, providing comprehensive coverage of sequence classification, one-dimensional and two-dimensional applications, graphs, interconnected networks, layouts, and embedded systems. Researchers, graduate students, professors, and professionals working in the fields of applied mathematics, electrical engineering, computer science and bioinformatics will find this book useful. Investigates computational and engineering applications associated with the de Bruijn graph, its sequences, and their generalization Explores one-dimensional and two-dimensional sequences with special properties and their various properties and applications Introduces the rich structure of the de Bruijn graph and its sequences, in both mathematical theory and its applications to computing and engineering problems