This book serves to up-date an earlier publication by one of the authors, and offers guidance and best practice in electrical measurements applicable to any required accuracy level.
Electrical Impedance: Principles, Measurement, and Applications provides a modern and much-needed overview of electrical impedance measurement science and its application in metrology, sensor reading, device and material characterizations. It presents up-to-date coverage of the theory, practical methods, and modeling. The author covers the main impedance measurement techniques, stressing their practical application. The book includes a large set of measurement setup schematics, and diagrams and photos of standards and devices. It also offers an extensive list of references to both historical and recent papers on devices, methods, and traceability issues. Reviews the main definitions of the quantities related to impedance, some theorems of particular interest, the issue of impedance representation, and introduces the problem of impedance definition Lists devices, appliances, circuits, and instruments employed as building blocks of impedance measurement setups Classifies the main impedance measurement methods, including details on their implementation when a specific impedance definition is chosen Discusses the increasing use of mixed-signal electronics in impedance measurement setups Covers applications including details on the measurement of electromagnetic properties of materials Introduces impedance metrology, including artifact impedance standards, and the realization and reproduction of SI impedance units
This book presents the proceedings of the International Conference on Systems, Control and Information Technologies 2016. It includes research findings from leading experts in the fields connected with INDUSTRY 4.0 and its implementation, especially: intelligent systems, advanced control, information technologies, industrial automation, robotics, intelligent sensors, metrology and new materials. Each chapter offers an analysis of a specific technical problem followed by a numerical analysis and simulation as well as the implementation for the solution of a real-world problem.
Explore the laws and theories of physics in this accessible introduction to the forces that shape our universe, our planet, and our everyday lives. Using a bold, graphics-led approach, The Physics Book sets out more than 80 of the key concepts and discoveries that have defined the subject and influenced our technology since the beginning of time. With the focus firmly on unpacking the thought behind each theory—as well as exploring when and how each idea and breakthrough came about—five themed chapters examine the history and developments in specific areas such as Light, Sound, and Electricity. Eureka moments abound: from Archimedes' bathtub discoveries about displacement and density, and Galileo's experiments with spheres falling from the Tower of Pisa, to Isaac Newton's apple and his conclusions about gravity and the laws of motion. You'll also learn about Albert Einstein's revelations about relativity; how the accidental discovery of cosmic microwave background radiation confirmed the Big Bang theory; the search for the Higgs boson particle; and why most of the universe is missing. If you've ever wondered exactly how physicists formulated—and proved—their abstract concepts, The Physics Book is the book for you. Series Overview: Big Ideas Simply Explained series uses creative design and innovative graphics along with straightforward and engaging writing to make complex subjects easier to understand. With over 7 million copies worldwide sold to date, these award-winning books provide just the information needed for students, families, or anyone interested in concise, thought-provoking refreshers on a single subject.
This book describes the significance of metrology for inclusive growth in India and explains its application in the areas of physical–mechanical engineering, electrical and electronics, Indian standard time measurements, electromagnetic radiation, environment, biomedical, materials and Bhartiya Nirdeshak Dravyas (BND®). Using the framework of “Aswal Model”, it connects the metrology, in association with accreditation and standards, to the areas of science and technology, government and regulatory agencies, civil society and media, and various other industries. It presents critical analyses of the contributions made by CSIR-National Physical Laboratory (CSIR-NPL), India, through its world-class science and apex measurement facilities of international equivalence in the areas of industrial growth, strategic sector growth, environmental protection, cybersecurity, sustainable energy, affordable health, international trade, policy-making, etc. The book will be useful for science and engineering students, researchers, policymakers and entrepreneurs.
From the reviews: "Haus’ book provides numerous insights on topics of wide importance, and contains much material not available elsewhere in book form. [...] an indispensable resource for those working in quantum optics or electronics." Optics & Photonics News
Introduction to Solid State Physics, in its Second Edition, provides a comprehensive introduction to the physical properties of crystalline solids. It explains the structure of crystals, theory of crystal diffraction and the reciprocal lattice. As the book advances, it describes different kinds of imperfections in crystals, bonding in solids, and vibration in one-dimensional monoatomic and diatomic linear lattice. Different theories of specific heat, thermal conductivity of solids and lattice thermal conductivity are thoroughly dealt with. Coverage also includes the free electron theory, band theory of solids and semiconductors. In addition, the book also describes in detail the magnetic properties of solids and superconductivity. Finally, the book includes discussions on lasers, nanotechnology and the basic principles of fibre optics and holography. Some new topics like cellular method, quantum Hall effect, de Haas van Alphen effect, Pauli paramagnetism and semiconductor laser have been added in the present edition of the book to make it more useful for the students. The book is designed to meet the requirements of undergraduate and postgraduate students of physics for their courses in solid state physics, condensed matter physics and material science. KEY FEATURES • Puts a conceptual emphasis on the subject. • Includes numerous diagrams and figures to clarify the concepts. • Gives step-by-step explanations of theories. • Provides chapter-end exercises to test the knowledge acquired.