A major new reference book bringing together wide-ranging expert guidance on coastal engineering, including harbours and estuaries. It covers both traditional engineering topics and the fast developing areas of mathematical modelling and computer simulation.
Effective coastal engineering is expensive, but it is not as costly as neglect or ineffective intervention. Good practice needs to be based on sound principles, but theoretical work and modelling also need to be well grounded in practice, which is continuously evolving. Conceptual and detailed design has been advanced by new industry publications since the publication of the second edition. This third edition provides a number of updates: the sections on wave overtopping have been updated to reflect changes brought in with the recently issued EurOtop II manual; a detailed worked example is given of the calculation of extreme wave conditions for design; additional examples have been included on the reliability of structures and probabilistic design; the method for tidal analysis and calculation of amplitudes and phases of harmonic constituents from water level time series has been introduced in a new appendix together with a worked example of harmonic analysis; and a real-life example is included of a design adapting to climate change. This book is especially useful as an information source for undergraduates and engineering MSc students specializing in coastal engineering and management. Readers require a good grounding in basic fluid mechanics or engineering hydraulics, and some familiarity with elementary statistical concepts.
This book is based on the author's 49 years of experience as a practicing coastal engineer and 34 years as professor of coastal engineering and management at Queen's University. The book is therefore thoroughly practical in nature, but it also reflects newly relevant issues, such as consequences of failure, impacts of rising sea levels, aging infrastructure, real estate development, and contemporary decision making, design and education.This textbook is useful for undergraduate students, postgraduate students and practicing engineers. It covers waves, structures, sediment movement, coastal management, and contemporary coastal design and decision making. It presents both basic principles and engineering solutions. It discusses the traditional methods of analysis and synthesis (design), but also contemporary design methodologies, such as working with environmental impacts.The second edition expanded greatly on the topics of failure and resilience that surfaced as a result of recent disasters from hurricane surges and tsunamis. It updated the discussion of design and decision making for the 21st century, with many new examples.This third edition develops some of these topics further, but its largest new changes is the chapter on climate change. This chapter presents the basics of climate change and then goes on to stress the practical implications of the impacts of climate change, focusing on what is of importance to coastal and fluvial specialists.
Written by a collection of eminent figures in the field, this new edition continues to look at the rational planning for port facilities requirements (berths, storage and cargo handling equipment), organisations, management and operations with relation to planning and design of ports and marine terminals.
The present edition, with new title Coastal Engineering, is the enlarged and updated volume of the book origin-ally published under the title Coastal Hydrodynamics in 2012. The book provides an overview of world population and ocean resources, natural threats and man-made hazards, and their impact on coastal environment. It discusses the fundamentals of wind, waves, tides and fluid flow and describes commonly adopted wave theories in coastal engineering. The text explains the methods for estimating wave forces on coastal structures, procedures for the analysis of wave data, and sediment transport. Apart from the estimation of beach profile evolution and shoreline change, the book discusses key aspects related to the design of different coastal structures. NEW TO THE SECOND EDITION • Includes two new chapters on Beach Profile and Shoreline Evolution and Design of Breakwaters and Coastal Protective Structures • Colour photographs are appended at the end of the book KEY FEATURES • Worked-out examples will benefit the reader to understand and solve variety of coastal engineering problems. • Exercises given at the end of each chapter would benefit the reader to get exposed to a variety of practical problems related to coastal engineering. TARGET AUDIENCE • B.Tech./M.Tech. (Ocean Engineering/ Marine Engineering)
This volume contains six papers discussing coastal processes, and physical and numerical modeling.In the first paper, Svendsen and Putrevu give an extensive review on the state of understanding of surf-zone hydrodynamics, including subjects such as wave breaking, wave-induced currents, and instability of nearshore currents and infragravity waves. They point out that the most urgent need is to develop an adequate theory for wave breaking and broken waves in the surf zone.One of the methods for studying the complex coastal processes is to perform laboratory experiments. However, physical models are always plagued by scale and laboratory effects, because the coastal process involves many different length and time scales. In the second paper, Kamphuis presents a detailed discussion on the sources and implications of the scale and laboratory effects on physical modeling.The third and the fourth papers are two parts of the discussion on the mathematical modeling of the meso-tidal barrier island coasts. To understand the dynamics of coastal inlet systems, one can either rely on empirical knowledge and construct various forms of empirical and semi-empirical models (Part I), or develop a set of mathematical models based on the physical processes (Part II). Although these models do not provide the details of the dynamics, they give valuable knowledge of the equilibrium-state relationships. de Vriend and Ribberink give a detailed review on two models, Initial Sedimentation/Erosion models and Medium-Term Morphodynamic models. They have also presented many examples of applications.In the fifth paper, Houston gives a brief review on different methods to mitigate beach loss caused by storms or persistent long-term erosion. He then describes, in detail, the method of beach nourishment, which is also called a beach fill. This paper discusses the information that must be collected to design a beach fill and that should be monitored after the completion of the project.The last paper of this volume shifts our attention to the design of offshore structures, such as gravity structures, floating barges and tankers. Chakrabarti discusses the effects of the uniform and shear currents on fixed and floating structures.
This book contains more than 300 papers presented at the 28th International Conference on Coastal Engineering, held in Cardiff, Wales, in July 2002. It is divided into five parts: coastal waves; nearshore currents, swash, and long waves; coastal structures; sediment transport; and coastal morphology, beach nourishment, and coastal management. The papers cover a broad range of topics, including theory, numerical and physical modeling, field measurements, case studies, design, and management. Coastal Engineering 2002 provides engineers, scientists, and planners with state-of-the-art information on coastal engineering and coastal processes.
The aim of this book is to provide a comprehensive overview of Coastal Engineering from basic theory to engineering practice. The authors of this book are worldwide authorities in the field. Each chapter deals with an important topic in the field of coastal engineering. The topics are of recent deep concern all over the world motivated by the 2004 Indian Ocean Tsunami, 2005 Hurricane Katrina, 2011 Tohoku Earthquake Tsunami and other natural disasters.For proper coastal zone management, a broad range of knowledge is necessary. This book provides a basic understanding of the theories behind the diverse natural phenomena within the coastal areas, such as waves, tsunamis and sediment transport. The book also introduces various coastal conservation technologies such as coastal structures and beach nourishment. Finally, coastal zone management practices in the USA, Europe, and Japan are introduced.Each chapter is self-standing and readers can begin from any topic depending on their interest.
A Users Guide to Hydraulic Modelling and Experimentation provides a systematic, comprehensive summary of the progress made through HYDRALAB III . The book combines the expertise of many of the leading hydraulic experimentalists in Europe and identifies current best practice for carrying out state-of-the-art, modern laboratory investigations. In addition it gives an inventory and reviews recent advances in instrumentation and equipment that drive present and new developments in the subject. The Guide concentrates on four core areas – waves, breakwaters, sediments and the relatively-new (but rapidly-developing) cross-disciplinary area of hydrodynamics/ecology. Progress made through the ‘CoMIBBS’ component of HYDRALAB III provides the material for a chapter focussed on guidance, principles and practice for composite modelling. There is detailed consideration of scaling and the degree of relevance of laboratory/physical modelling approaches for specific contexts included in each of the individual chapters. The Guide includes outputs from the workshops and several of the innovative transnational access projects that have been supported within HYDRALAB III, as well as the focussed joint research activities SANDS and CoMIBBS. Its primary purpose is to serve as a shared resource to disseminate the outstanding advances achieved within HYDRALAB III but, even more than this, it is a tribute to the human and institutional collaborations that led to and sustained the research advances, the human relationships that were strengthened and initiated through joint participation in the Programme, and the training opportunities that participation provided to the many young researchers engaged in the projects.
This conference series is a forum for enhancing mutual understanding between Biomedical Engineering and Environmental Engineering field. This proceeding provides contributions from many experts representing industry and academic establishments worldwide. The researchers are from different countries and professional. The conference brought