This book will introduce various power management integrated circuits (IC) design techniques to build future energy-efficient “green” electronics. The goal is to achieve high efficiency, which is essential to meet consumers’ growing need for longer battery lives. The focus is to study topologies amiable for full on-chip implementation (few external components) in the mainstream CMOS technology, which will reduce the physical size and the manufacturing cost of the devices.
This book enables readers to gain a deep understanding of the challenges related to the design of a charge pump (CP). Analysis, modeling, design strategies and topologies are treated in detail. Novel and high-performance CP topologies and related design are organized in a coherent manner, with particular care devoted to ultra-low power and energy harvesting applications. The authors provide basic theoretical foundations as needed, in order to set the stage for readers’ comprehension of analyses and results. Exhaustive methodologies are presented and analytical derivations are included, enabling readers to gain insight on the main dependencies among the relevant circuit parameters. Although the material is presented in a formal and theoretical manner, emphasis is on the design perspective, using many practical examples and measured results.
This book describes the structured design and optimization of efficient, energy processing integrated circuits. The approach is multidisciplinary, covering the monolithic integration of IC design techniques, power electronics and control theory. In particular, this book enables readers to conceive, synthesize, design and implement integrated circuits with high-density high-efficiency on-chip switching power regulators. Topics covered encompass the structured design of the on-chip power supply, efficiency optimization, IC-compatible power inductors and capacitors, power MOSFET switches and efficient switch drivers in standard CMOS technologies.
The book will address the-state-of-the-art in integrated circuit design in the context of emerging systems. New exciting opportunities in body area networks, wireless communications, data networking, and optical imaging are discussed. Emerging materials that can take system performance beyond standard CMOS, like Silicon on Insulator (SOI), Silicon Germanium (SiGe), and Indium Phosphide (InP) are explored. Three-dimensional (3-D) CMOS integration and co-integration with sensor technology are described as well. The book is a must for anyone serious about circuit design for future technologies. The book is written by top notch international experts in industry and academia. The intended audience is practicing engineers with integrated circuit background. The book will be also used as a recommended reading and supplementary material in graduate course curriculum. Intended audience is professionals working in the integrated circuit design field. Their job titles might be : design engineer, product manager, marketing manager, design team leader, etc. The book will be also used by graduate students. Many of the chapter authors are University Professors.
This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.
The book gathers the major issues involved in the practical design of Power Management solutions in wireless products as Internet-of-things. Presentation is not about state-of-the-art but about appropriation of validated recent technologies by practicing engineers. The book delivers insights on major trade-offs and a presentation of examples as a cookbook. The content is segmented in chapters to make access easier for the lay-person.
Power Management Integrated Circuits and Technologies delivers a modern treatise on mixed-signal integrated circuit design for power management. Comprised of chapters authored by leading researchers from industry and academia, this definitive text: Describes circuit- and architectural-level innovations that meet advanced power and speed capabilities Explores hybrid inductive-capacitive converters for wide-range dynamic voltage scaling Presents innovative control techniques for single inductor dual output (SIDO) and single inductor multiple output (SIMO) converters Discusses cutting-edge design techniques including switching converters for analog/RF loads Compares the use of GaAs pHEMTs to CMOS devices for efficient high-frequency switching converters Thus, Power Management Integrated Circuits and Technologies provides comprehensive, state-of-the-art coverage of this exciting and emerging field of engineering.
This book is based on the 18 tutorials presented during the 22nd workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including frequency reference, power management for systems-on-chip, and smart wireless interfaces. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.
Analog Circuit Design contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of: Topic 1 : Low Voltage Low Power, chairman: Andrea Baschirotto Topic 2 : Short Range Wireless Front-Ends, chairman: Arthur van Roermund Topic 3 : Power Management and DC-DC, chairman : Michiel Steyaert. Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course.
This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.