The first MATLAB® programming book written specifically for clinical radiotherapy medical physicists and medical physics trainees, this much-needed book teaches users how to create their own clinical applications using MATLAB®, as a complement to commercial software particularly when the latter does not cover specific local clinical needs. Chapters explore key radiotherapy areas such as handling volumes, 3D dose calculation, comparing dose distributions, reconstructing treatment plans and their summations, and automated tests for machine quality assurance. Readers will learn to independently analyse and process images, doses, structures, and other radiotherapy clinical data to deal with standard and non-standard situations in radiotherapy. This book will also significantly improve understanding of areas such as data nature, information content, DICOM RT standard, and data flow. It will be an invaluable reference for students of medical physics, in addition to clinical radiotherapy physicists and researchers working in radiotherapy. Features: Includes real clinical medical physics applications derived from actual clinical problems Provides commented MATLAB® scripts working with sample data and/or own data matching input requirements Promotes critical thinking and practical problem solving skills
The first MATLAB® programming book written specifically for clinical radiotherapy medical physicists and medical physics trainees, this much-needed book teaches users how to create their own clinical applications using MATLAB®, as a complement to commercial software particularly when the latter does not cover specific local clinical needs. Chapters explore key radiotherapy areas such as handling volumes, 3D dose calculation, comparing dose distributions, reconstructing treatment plans and their summations, and automated tests for machine quality assurance. Readers will learn to independently analyse and process images, doses, structures, and other radiotherapy clinical data to deal with standard and non-standard situations in radiotherapy. This book will also significantly improve understanding of areas such as data nature, information content, DICOM RT standard, and data flow. It will be an invaluable reference for students of medical physics, in addition to clinical radiotherapy physicists and researchers working in radiotherapy. Features: Includes real clinical medical physics applications derived from actual clinical problems Provides commented MATLAB® scripts working with sample data and/or own data matching input requirements Promotes critical thinking and practical problem solving skills
The use of MATLAB® in clinical Medical Physics is continuously increasing, thanks to new technologies and developments in the field. However, there is a lack of practical guidance for students, researchers, and medical professionals on how to incorporate it into their work. Focusing on the areas of diagnostic Nuclear Medicine and Radiation Oncology Imaging, this book provides a comprehensive treatment of the use of MATLAB in clinical Medical Physics, in Nuclear Medicine. It is an invaluable guide for medical physicists and researchers, in addition to postgraduates in medical physics or biomedical engineering, preparing for a career in the field. In the field of Nuclear Medicine, MATLAB enables quantitative analysis and the visualization of nuclear medical images of several modalities, such as Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), or a hybrid system where a Computed Tomography system is incorporated into a SPECT or PET system or similarly, a Magnetic Resonance Imaging system (MRI) into a SPECT or PET system. Through a high-performance interactive software, MATLAB also allows matrix computation, simulation, quantitative analysis, image processing, and algorithm implementation. MATLAB can provide medical physicists with the necessary tools for analyzing and visualizing medical images. It is useful in creating imaging algorithms for diagnostic and therapeutic purposes, solving problems of image reconstruction, processing, and calculating absorbed doses with accuracy. An important feature of this application of MATLAB is that the results are completely reliable and are not dependent on any specific γ-cameras and workstations. The use of MATLAB algorithms can greatly assist in the exploration of the anatomy and functions of the human body, offering accurate and precise results in Nuclear Medicine studies. KEY FEATURES Presents a practical, case-based approach whilst remaining accessible to students Contains chapter contributions from subject area specialists across the field Includes real clinical problems and examples, with worked through solutions Maria Lyra Georgosopoulou, PhD, is a Medical Physicist and Associate Professor at the National and Kapodistrian University of Athens, Greece. Photo credit: The Antikythera Mechanism is the world’s oldest known analog computer. It consisted of many wheels and discs that could be placed onto the mechanism for calculations. It is possible that the first algorithms and analog calculations in mathematics were implemented with this mechanism, invented in the early first centuries BC. It has been selected for the cover to demonstrate the importance of calculations in science.
This book provides a clinical insight into image-guided radiation therapy (IGRT) for prostate cancer. It starts by setting the clinical scene, discussing immobilisation and standard IGRT practice and then considering important developments like IGRT with non-ionising radiation, adaptive radiotherapy, particle therapy, margins, hypofractionation, clinical outcomes, AI and training. Good IGRT requires both technical and clinical focus. So, in complement to our first study guide on IGRT, this book now brings together key, clinical insights into IGRT for Prostate Cancer patients, with a view to helping the professional learn more about ‘how-to’ undertake IGRT for these patients more accurately, effectively and safely, throughout the whole course of a patient’s treatment with radiation. This clinical insight guide will be of interest to newly qualified radiation therapists, therapeutic radiographers, medical dosimetrists, medical physicists, radiotherapy physicists and clinical oncologists. It will also be of use for trainees and can be used alongside continuing competency and clinical training within real clinical departments and radiation therapy centres worldwide. This is the first in a forthcoming series of clinical insights, each tackling a different treatment area. Further areas in the series will be: Head and Neck; Thorax; Breast; Pelvis; and the Brain. Key Features: • Internationally applicable, clinically focused, up-to-date and evidence based. · Accompanied by suitable electronic multimedia resources. · Authored by experts with decades of experience of pioneering electronic portal imaging and IGRT in clinical practice, pedagogic research and substantial experience of teaching/supervising students, trainees and qualified therapists/medical physicists at bachelors, postgraduate and doctoral levels. Mike Kirby and Kerrie-Anne Calder are well-respected authors and radiotherapy professionals, who have worked in radiotherapy physics/radiotherapy clinical and academic practice for nearly 35 years and 25 years respectively. Mike Kirby is a Senior Lecturer in Radiotherapy Physics at the University of Liverpool, UK, and an Honorary Lecturer at the University of Manchester, UK. He holds graduate and postgraduate qualifications in medical physics and has in total over 200 books, papers, oral and poster presentations to his name in the field of radiotherapy. Dr. Kirby holds professional membership of the Institute of Physics and Engineering in Medicine, the American Association of Physicists in Medicine, the American Society for Radiation Oncology, the European Society for Radiotherapy and Oncology and the British Institute of Radiology, is a Fellow of the Higher Education Academy and the British Institute of Radiology in the UK. Kerrie-Anne Calder is a Lecturer at the University of Liverpool, UK, where she educates undergraduate and post graduate students in many aspects of radiotherapy with a special interest and role in imaging training. Kerrie-Anne has graduate and postgraduate qualifications in radiotherapy, education and academic practice, is a member of the Society and College of Radiographers, and is a Fellow of the Higher Education Academy in the UK. She was a clinical and professional lead in IGRT (on-treatment verification imaging) within the NHS in the UK for over ten years.
This state-of-the-art handbook, the third and final in a series that provides medical physicists with a comprehensive overview into the field of nuclear medicine, focuses on highlighting the production and application of radiopharmaceuticals. With this, the book also describes the chemical composition of these compounds, as well as some of the main clinical applications where radiopharmaceuticals may be used. Following an introduction to the field of radiopharmacy, three chapters in this book are dedicated towards in-depth descriptions of common radionuclides and radiopharmaceuticals used during diagnostic studies utilizing planar/Single Photon Emission Computed Tomography (SPECT) imaging, in addition to during Positron Emission Tomography (PET) imaging, and, finally, radiotherapy. These chapters are followed by those describing procedures relating to quality control and manufacturing (good manufacturing practices) also encompassing aspects such as environmental compliance. Furthermore, this volume illustrates how facilities handling these chemicals should be designed to comply with set regulations. Like many pharmaceuticals, the development of radiopharmaceuticals relies heavily on the use of mouse models. Thus, the translation of radiopharmaceuticals (i.e., the process undertaken to assure that the functionality and safety of a newly developed drug is maintained also in a human context), is covered in a later chapter. This is followed by a chapter emphasising the importance of safe waste disposal and how to assure that these procedures meet the requirements set for the disposal of hazardous waste. Several chapters have also been dedicated towards describing various medical procedures utilizing clinical nuclear medicine as a tool for diagnostics and therapeutics. As physicists may be involved in clinical trials, a chapter describing the procedures and regulations associated with these types of studies is included. This is followed by a chapter focusing on patient safety and another on an imaging modality not based on ionizing radiation – ultrasound. Finally, the last chapter of this book discusses future perspectives of the field of nuclear medicine. This text will be an invaluable resource for libraries, institutions, and clinical and academic medical physicists searching for a complete account of what defines nuclear medicine. The most comprehensive reference available providing a state-of-the-art overview of the field of nuclear medicine Edited by a leader in the field, with contributions from a team of experienced medical physicists, chemists, engineers, scientists, and clinical medical personnel Includes the latest practical research in the field, in addition to explaining fundamental theory and the field's history
The treatment of a patient with radiation therapy is planned to find the optimal way to treat a tumour while minimizing the dose received by the surrounding normal tissues. In order to better exploit the possibilities of this process, the availability of accurate and quantitative knowledge of the peculiar responses of the different tissues is of paramount importance. This book provides an invaluable tutorial for radiation oncologists, medical physicists, and dosimetrists involved in the planning optimization phase of treatment. It presents a practical, accessible, and comprehensive summary of the field’s current research and knowledge regarding the response of normal tissues to radiation. This is the first comprehensive attempt to do so since the publication of the QUANTEC guidelines in 2010. Features: Addresses the lack of systemization in the field, providing educational materials on predictive models, including methods, tools, and the evaluation of uncertainties Collects the combined effects of features, other than dose, in predicting the risk of toxicity in radiation therapy Edited by two leading experts in the field
The second in a three-volume set exploring Problems and Solutions in Medical Physics, this volume explores common questions and their solutions in Nuclear Medicine. This invaluable study guide should be used in conjunction with other key textbooks in the field to provide additional learning opportunities. Topics include radioactivity and nuclear transformation, radionuclide production and radiopharmaceuticals, non-imaging detectors and counters, instrumentation for gamma imaging, SPECT and PET/CT, imaging techniques, radionuclide therapy, internal radiation dosimetry, and quality control and radiation protection in nuclear medicine. Each chapter provides examples, notes, and references for further reading to enhance understanding. Features: Consolidates concepts and assists in the understanding and applications of theoretical concepts in medical physics Assists lecturers and instructors in setting assignments and tests Suitable as a revision tool for postgraduate students sitting medical physics, oncology, and radiology sciences examinations
With contributions from leading international researchers, this second edition of Electrical Impedance Tomography: Methods, History and Applications has been fully updated throughout and contains new developments in the field, including sections on image interpretation and image reconstruction. Providing a thorough review of the progress of EIT, the present state of knowledge, and a look at future advances and applications, this accessible reference will be invaluable for mathematicians, physicists dealing with bioimpedance, electronic engineers involved in developing and extending its applications, and clinicians wishing to take advantage of this powerful imaging method. Key Features: Fully updated throughout, with new sections on image interpretation and image reconstruction Overview of the current state of experimental and clinical use of EIT as well as active research developments Overview of related research in geophysics, industrial process tomography, magnetic-resonance and magnetic-induction impedance imaging
This book explores the physics of CT dosimetry and provides practical guidance on best practice for medical researchers and practitioners. A rigorous description of the basic physics of CT dosimetry is presented and illustrates flaws of the current methodology. It also contains helpful (and rigorous) shortcuts to reduce the measurement workload for medical physicists. The mathematical rigor is accompanied by easily-understood physical explanations and numerous illustrative figures. Features: Authored by a recognised expert in the field and award-winning teacher Includes derivations for tube current modulation and variable pitch as well as stationary table techniques Explores abnormalities present in dose-tracking software based on CTDI and presents methods to correct them
Augmented reality (AR) is transforming how we work, learn, play and connect with the world, and is now being introduced to the field of medicine, where it is revolutionising healthcare as pioneering virtual elements are being added to real images to provide a more compelling and intuitive view during procedures. This book, which had its beginnings at the AE-CAI: Augmented Environments for Computer-Assisted Interventions MICCAI Workshop in Munich in 2015, is the first to review the area of mixed and augmented reality in medicine. Covering a range of examples of the use of AR in medicine, it explores its relevance to minimally-invasive interventions, how it can improve the accuracy of a procedure and reduce procedure time, and how it may be employed to reduce radiation risks. It also discusses how AR can be an effective tool in the education of physicians, medical students, nurses and other health professionals. Features: An ideal practical guide for medical professionals and students looking to understand the implementation, applications, and future of AR Contains the latest developments and technologies in this innovative field Edited by highly respected pioneers in the field, who have been immersed in AR as well as virtual reality and image-guided surgery since their inception, with chapter contributions from subject area specialists working with AR