Climate Modeling for Scientists and Engineers

Climate Modeling for Scientists and Engineers

Author: John B. Drake

Publisher: SIAM

Published: 2014-01-01

Total Pages: 169

ISBN-13: 1611973546

DOWNLOAD EBOOK

Climate modeling and simulation teach us about past, present, and future conditions of life on earth and help us understand observations about the changing atmosphere and ocean and terrestrial ecology. Focusing on high-end modeling and simulation of earth's climate, Climate Modeling for Scientists and Engineers presents observations about the general circulations of the earth and the partial differential equations used to model the dynamics of weather and climate, covers numerical methods for geophysical flows in more detail than many other texts, discusses parallel algorithms and the role of high-performance computing used in the simulation of weather and climate, and provides supplemental lectures and MATLAB® exercises on an associated Web page.


Climate Modeling for Scientists and Engineers

Climate Modeling for Scientists and Engineers

Author: John B. Drake

Publisher: SIAM

Published: 2014-08-26

Total Pages: 169

ISBN-13: 1611973538

DOWNLOAD EBOOK

Climate modeling and simulation teach us about past, present, and future conditions of life on earth and help us understand observations about the changing atmosphere and ocean and terrestrial ecology. Focusing on high-end modeling and simulation of earth's climate, Climate Modeling for Scientists and Engineers presents observations about the general circulations of the earth and the partial differential equations used to model the dynamics of weather and climate, covers numerical methods for geophysical flows in more detail than many other texts, discusses parallel algorithms and the role of high-performance computing used in the simulation of weather and climate, and provides over 100 pages of supplemental lectures and MATLAB? exercises on an associated web page. This book is intended for graduate students in science and engineering. It is also useful for a broad spectrum of computational science and engineering researchers, especially those who want a brief introduction to the methods and capabilities of climate models and those who use climate model results in their investigations. Information on numerical methods used to solve the equations of motion and climate simulations using parallel algorithms on high-performance computers challenges researchers who aim to improve the prediction of climate on decadal to century time scales.


Demystifying Climate Models

Demystifying Climate Models

Author: Andrew Gettelman

Publisher: Springer

Published: 2016-04-09

Total Pages: 282

ISBN-13: 3662489597

DOWNLOAD EBOOK

This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.


Modelling the Impact of Climate Change on Water Resources

Modelling the Impact of Climate Change on Water Resources

Author: C. Fai Fung

Publisher: John Wiley & Sons

Published: 2011-07-05

Total Pages: 215

ISBN-13: 1444348175

DOWNLOAD EBOOK

The quantitative assessment of the impact of climate change on water availability and water resources management requires knowledge of climate, hydro(geo)logical and water resources models, and particularly the relationships between each of them. This book brings together world experts on each of these aspects, distilling each complex topic into concise and easy to understand chapters, in which both the uses and limitations of modelling are explored. The book concludes with a set of case studies using real-life examples to illustrate the steps required and the problems that can be faced in assessing the potential impacts of climate change on water resource systems. For students, scientists, engineers and decision-makers alike, this book provides an invaluable and critical look at the information that is provided by climate models, and the ways it is used in modelling water systems. A key focus is the exploration of how uncertainties may accrue at each stage of an impacts assessment, and the reliability of the resulting information. The book is a practical guide to understanding the opportunities and pitfalls in the quantitative assessment of climate change impacts and adaptation in the water resource sector.


Mathematics and Climate

Mathematics and Climate

Author: Hans Kaper

Publisher: SIAM

Published: 2013-10-18

Total Pages: 303

ISBN-13: 1611972612

DOWNLOAD EBOOK

Mathematics and Climate is a timely textbook aimed at students and researchers in mathematics and statistics who are interested in current issues of climate science, as well as at climate scientists who wish to become familiar with qualitative and quantitative methods of mathematics and statistics. The authors emphasize conceptual models that capture important aspects of Earth's climate system and present the mathematical and statistical techniques that can be applied to their analysis. Topics from climate science include the Earth?s energy balance, temperature distribution, ocean circulation patterns such as El Ni?o?Southern Oscillation, ice caps and glaciation periods, the carbon cycle, and the biological pump. Among the mathematical and statistical techniques presented in the text are dynamical systems and bifurcation theory, Fourier analysis, conservation laws, regression analysis, and extreme value theory. The following features make Mathematics and Climate a valuable teaching resource: issues of current interest in climate science and sustainability are used to introduce the student to the methods of mathematics and statistics; the mathematical sophistication increases as the book progresses and topics can thus be selected according to interest and level of knowledge; each chapter ends with a set of exercises that reinforce or enhance the material presented in the chapter and stimulate critical thinking and communication skills; and the book contains an extensive list of references to the literature, a glossary of terms for the nontechnical reader, and a detailed index.


Introduction to Three-Dimensional Climate Modeling

Introduction to Three-Dimensional Climate Modeling

Author: Warren M. Washington

Publisher: University Science Books

Published: 2005-06-24

Total Pages: 372

ISBN-13: 9781891389351

DOWNLOAD EBOOK

Warren M. Washington is consultant and advisor to a number of government officials and committees on climate-system modelling. Now along with Claire Parkinson (NASA) he gives the reader insight into the complex field of climate modelling. Updated and revised from the first edition, this book is a welcome reference on climate modeling; an area that is becoming more and more sought after in light of environmental changes. Suitable for those wanting an in-road into understanding climate modeling but also an excellent companion for those with some prior knowledge of modeling meteorological systems.


Mathematical Modeling and Simulation

Mathematical Modeling and Simulation

Author: Kai Velten

Publisher: John Wiley & Sons

Published: 2009-06-01

Total Pages: 362

ISBN-13: 3527627618

DOWNLOAD EBOOK

This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).


Transport Modeling for Environmental Engineers and Scientists

Transport Modeling for Environmental Engineers and Scientists

Author: Mark M. Clark

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 662

ISBN-13: 1118210867

DOWNLOAD EBOOK

Transport Modeling for Environmental Engineers and Scientists, Second Edition, builds on integrated transport courses in chemical engineering curricula, demonstrating the underlying unity of mass and momentum transport processes. It describes how these processes underlie the mechanics common to both pollutant transport and pollution control processes.


Downscaling Techniques for High-Resolution Climate Projections

Downscaling Techniques for High-Resolution Climate Projections

Author: Rao Kotamarthi

Publisher: Cambridge University Press

Published: 2021-02-11

Total Pages: 213

ISBN-13: 1108587062

DOWNLOAD EBOOK

Downscaling is a widely used technique for translating information from large-scale climate models to the spatial and temporal scales needed to assess local and regional climate impacts, vulnerability, risk and resilience. This book is a comprehensive guide to the downscaling techniques used for climate data. A general introduction of the science of climate modeling is followed by a discussion of techniques, models and methodologies used for producing downscaled projections, and the advantages, disadvantages and uncertainties of each. The book provides detailed information on dynamic and statistical downscaling techniques in non-technical language, as well as recommendations for selecting suitable downscaled datasets for different applications. The use of downscaled climate data in national and international assessments is also discussed using global examples. This is a practical guide for graduate students and researchers working on climate impacts and adaptation, as well as for policy makers and practitioners interested in climate risk and resilience.