This book provides the most recent understanding about climate change and its effects on agriculture in India. Further in-depth research is showcased regarding important allied sectors such as horticulture and fisheries, and examines the effect of climate change on different cereal crops. The individual chapters discuss the different mitigation strategies for climate change impacts and detail abiotic and biotic stresses in relation to climate change. The book provides an insight into environmentally safe and modern technologies approaches such as nanotechnology and utilization of underutilized crops under a changing climate. This book provides a solid foundation for the discussion of climate resilience in agricultural systems and the requirements to keep improving agricultural production. This book is an excellent resource for researchers, instructors, students in agriculture, horticulture and environmental science.
Climate change will lead to many changes in global development and security especially energy, water, food, society, job, diplomacy, culture, economy and trade. The Intergovernmental Panel on Climate Change (IPCC) defines climate change as: “Any change in climate over time, whether due to natural variability or as a result of human activity.” Global climate change has emerged as a key issue in both political and economic arenas. It is an increasingly questioned phenomenon, and progressive national governments around the world have started taking action to respond to these environmental concerns. This book discusses the issue of food and water security in India under the context of climate change. It provides information to scientists and local government to help them better understand the particularities of the local climate. It offers insight into the changes to natural ecosystems which have affected the local Indian population. Climate change is one of the biggest challenges to Indian society. It can lead to serious impacts on production, life and the environment. Higher temperatures and sea level rise can lead to flooding and cause water salinity problems which bring about negative effects on agriculture and high risks to industry and socio-economic systems in the future.
CLIMATE IMPACTS ON SUSTAINABLE NATURAL RESOURCE MANAGEMENT Climate change has emerged as one of the predominant global concerns of the 21st century. Statistics show that the average surface temperature of the Earth has increased by about 1.18°C since the late 19th century and the sea levels are rising due to the melting of glaciers. Further rise in the global temperature will have dire consequences for the survival of humans on the planet Earth. There is a need to monitor climatic data and associated drivers of changes to develop sustainable planning. The anthropogenic activities that are linked to climate change need scientific evaluation and must be curtailed before it is too late. This book contributes significantly in the field of sustainable natural resource management linked to climate change. Up to date research findings from developing and developed countries like India, Indonesia, Japan, Malaysia, Sri Lanka and the USA have been presented through selected case studies covering different thematic areas. The book has been organised into six major themes of sustainable natural resource management, determinants of forest productivity, agriculture and climate change, water resource management and riverine health, climate change threat on natural resources, and linkages between natural resources and biotic-abiotic stressors to develop the concept and to present the findings in a way that is useful for a wide range of readers. While the range of applications and innovative techniques is constantly increasing, this book provides a summary of findings to provide the updated information. This book will be of interest to researchers and practitioners in the field of environmental sciences, remote sensing, geographical information system, meteorology, sociology and policy studies related to natural resource management and climate change.
This Food Policy Report presents research results that quantify the climate-change impacts mentioned above, assesses the consequences for food security, and estimates the investments that would offset the negative consequences for human well-being.
Ending poverty and stabilizing climate change will be two unprecedented global achievements and two major steps toward sustainable development. But the two objectives cannot be considered in isolation: they need to be jointly tackled through an integrated strategy. This report brings together those two objectives and explores how they can more easily be achieved if considered together. It examines the potential impact of climate change and climate policies on poverty reduction. It also provides guidance on how to create a “win-win†? situation so that climate change policies contribute to poverty reduction and poverty-reduction policies contribute to climate change mitigation and resilience building. The key finding of the report is that climate change represents a significant obstacle to the sustained eradication of poverty, but future impacts on poverty are determined by policy choices: rapid, inclusive, and climate-informed development can prevent most short-term impacts whereas immediate pro-poor, emissions-reduction policies can drastically limit long-term ones.
This book addresses in detail multifaceted approaches to boosting nutrient use efficiency (NUE) that are modified by plant interactions with environmental variables and combine physiological, microbial, biotechnological and agronomic aspects. Conveying an in-depth understanding of the topic will spark the development of new cultivars and strains to induce NUE, coupled with best management practices that will immensely benefit agricultural systems, safeguarding their soil, water, and air quality. Written by recognized experts in the field, the book is intended to provide students, scientists and policymakers with essential insights into holistic approaches to NUE, as well as an overview of some successful case studies. In the present understanding of agriculture, NUE represents a question of process optimization in response to the increasing fragility of our natural resources base and threats to food grain security across the globe. Further improving nutrient use efficiency is a prerequisite to reducing production costs, expanding crop acreage into non-competitive marginal lands with low nutrient resources, and preventing environmental contamination. The nutrients most commonly limiting plant growth are N, P, K, S and micronutrients like Fe, Zn, B and Mo. NUE depends on the ability to efficiently take up the nutrient from the soil, but also on transport, storage, mobilization, usage within the plant and the environment. A number of approaches can help us to understand NUE as a whole. One involves adopting best crop management practices that take into account root-induced rhizosphere processes, which play a pivotal role in controlling nutrient dynamics in the soil-plant-atmosphere continuum. New technologies, from basic tools like leaf color charts to sophisticated sensor-based systems and laser land leveling, can reduce the dependency on laboratory assistance and manual labor. Another approach concerns the development of crop plants through genetic manipulations that allow them to take up and assimilate nutrients more efficiently, as well as identifying processes of plant responses to nutrient deficiency stress and exploring natural genetic variation. Though only recently introduced, the ability of microbial inoculants to induce NUE is gaining in importance, as the loss, immobilization, release and availability of nutrients are mediated by soil microbial processes.
Unless action is taken now to make agriculture more sustainable, productive and resilient, climate change impacts will seriously compromise food production in countries and regions that are already highly food-insecure. The Paris Agreement, adopted in December 2015, represents a new beginning in the global effort to stabilize the climate before it is too late. It recognizes the importance of food security in the international response to climate change, as reflected by many countries prominent focus on the agriculture sector in their planned contributions to adaptation and mitigation. To help put those plans into action, this report identifies strategies, financing opportunities, and data and information needs. It also describes transformative policies and institutions that can overcome barriers to implementation. The State of Food and Agriculture is produced annually. Each edition contains an overview of the current global agricultural situation, as well as more in-depth coverage of a topical theme."
The effects of climate change can already be felt around the world, and they will likely impact all facets of human civilization—from health, livelihood security, agricultural production, and shelter to international trade. Since anthropogenic factors are mainly to blame for the current trends in global warming, human intervention will be necessary to mitigate it. With 17 authoritative chapters, Combating Climate Change: An Agricultural Perspective outlines a framework for preparing agriculture for climate change, presenting the causes and consequences of climate change and possible remediation measures. With contributions from internationally recognized scientists, the chapters cover global food security, adaptation of agriculture to fulfill its greenhouse gas emissions mitigation potential, economic aspects of climate change, the soil organic carbon pool, the need for agroecological intelligence, and the development of nutrient-use-efficient crops. The text also addresses genetic mitigation of climate change effects through the development of climate-resilient crops and the use of genetic and genomic resources to develop highly productive crop cultivars, as well as the conservation of native agroecosystems. Expert contributors discuss the impacts of climate change on plant pathogens and plant disease as well as on insects and crop losses. They address abiotic stress resistance, conservation tillage as a mitigation strategy, and more. The final chapter demonstrates the practical use of the WorldClim and DIVA software for modeling current and future climates, using Timor Leste and India as examples. Covering a broad range of issues related to climate change and agriculture, this book brings together ideas for environmentally friendly technologies and opportunities to further increase and stabilize global agricultural productivity and ensure food security in face of mounting climate challenge.
Climate Change and Agricultural Ecosystems explains the causative factors of climate change related to agriculture, soil and plants, and discusses the relevant resulting mitigation process. Agricultural ecosystems include factors from the surrounding areas where agriculture experiences direct or indirect interaction with the plants, animals, and microbes present. Changes in climatic conditions influence all the factors of agricultural ecosystems, which can potentially adversely affect their productivity. This book summarizes the different aspects of vulnerability, adaptation, and amelioration of climate change in respect to plants, crops, soil, and microbes for the sustainability of the agricultural sector and, ultimately, food security for the future. It also focuses on the utilization of information technology for the sustainability of the agricultural sector along with the capacity and adaptability of agricultural societies under climate change. Climate Change and Agricultural Ecosystems incorporates both theoretical and practical aspects, and serves as base line information for future research. This book is a valuable resource for those working in environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy. - Covers the role of chemicals fertilizers, environmental deposition, and xenobiotics in climate change - Discusses the impact of climate change on plants, soil, microflora, and agricultural ecosystems - Explores the mitigation of climate change by sustainable methods - Presents the role of computational modelling in climate change mitigation