Clifford Algebra and Spinor-Valued Functions

Clifford Algebra and Spinor-Valued Functions

Author: R. Delanghe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 501

ISBN-13: 9401129223

DOWNLOAD EBOOK

This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (Chapters 0 and I) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters II and III illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space. In Chapter IV the concept of monogenic differential forms is generalized to the case of spin-manifolds. Chapter V deals with analysis on homogeneous spaces, and shows how Clifford analysis may be connected with the Penrose transform. The volume concludes with some Appendices which present basic results relating to the algebraic and analytic structures discussed. These are made accessible for computational purposes by means of computer algebra programmes written in REDUCE and are contained on an accompanying floppy disk.


Clifford Algebra and Spinor-valued Functions

Clifford Algebra and Spinor-valued Functions

Author: Richard Delanghe

Publisher: Springer Science & Business Media

Published: 1992

Total Pages: 518

ISBN-13:

DOWNLOAD EBOOK

This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (chapters 0 and 1) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters 2 and 3 illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space.


Clifford Algebras and Spinors

Clifford Algebras and Spinors

Author: Pertti Lounesto

Publisher: Cambridge University Press

Published: 2001-05-03

Total Pages: 352

ISBN-13: 0521005515

DOWNLOAD EBOOK

This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.


An Introduction to Clifford Algebras and Spinors

An Introduction to Clifford Algebras and Spinors

Author: Jayme Vaz Jr.

Publisher: Oxford University Press

Published: 2016

Total Pages: 257

ISBN-13: 0198782926

DOWNLOAD EBOOK

This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.


Clifford Algebras and Spinor Structures

Clifford Algebras and Spinor Structures

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 428

ISBN-13: 9401584222

DOWNLOAD EBOOK

This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.


Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics

Author: F. Brackx

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 405

ISBN-13: 9401120064

DOWNLOAD EBOOK

This International Conference on Clifford AlgebrfU and Their Application, in Math ematical Phy,ic, is the third in a series of conferences on this theme, which started at the Univer,ity of Kent in Canterbury in 1985 and was continued at the Univer,iU de, Science, et Technique, du Languedoc in Montpellier in 1989. Since the start of this series of Conferences the research fields under consideration have evolved quite a lot. The number of scientific papers on Clifford Algebra, Clifford Analysis and their impact on the modelling of physics phenomena have increased tremendously and several new books on these topics were published. We were very pleased to see old friends back and to wellcome new guests who by their inspiring talks contributed fundamentally to tracing new paths for the future development of this research area. The Conference was organized in Deinze, a small rural town in the vicinity of the University town Gent. It was hosted by De Ceder, a vacation and seminar center in a green area, a typical landscape of Flanders's "plat pays" . The Conference was attended by 61 participants coming from 18 countries; there were 10 main talks on invitation, 37 contributions accepted by the Organizing Com mittee and a poster session. There was also a book display of Kluwer Academic Publishers. As in the Proceedings of the Canterbury and Montpellier conferences we have grouped the papers accordingly to the themes they are related to: Clifford Algebra, Clifford Analysis, Classical Mechanics, Mathematical Physics and Physics Models.


Clifford Analysis and Its Applications

Clifford Analysis and Its Applications

Author: F. Brackx

Publisher: Springer Science & Business Media

Published: 2001-07-31

Total Pages: 440

ISBN-13: 9780792370444

DOWNLOAD EBOOK

In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.


Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics

Author: Rafał Abłamowicz

Publisher: Springer Science & Business Media

Published: 2000

Total Pages: 346

ISBN-13: 9780817641832

DOWNLOAD EBOOK

The second part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. from applications such as complex-distance potential theory, supersymmetry, and fluid dynamics to Fourier analysis, the study of boundary value problems, and applications, to mathematical physics and Schwarzian derivatives in Euclidean space. Among the mathematical topics examined are generalized Dirac operators, holonomy groups, monogenic and hypermonogenic functions and their derivatives, quaternionic Beltrami equations, Fourier theory under Mobius transformations, Cauchy-Reimann operators, and Cauchy type integrals.


Clifford Algebras and Their Application in Mathematical Physics

Clifford Algebras and Their Application in Mathematical Physics

Author: Volker Dietrich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 458

ISBN-13: 9401150362

DOWNLOAD EBOOK

Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.


Clifford Algebras

Clifford Algebras

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 635

ISBN-13: 1461220440

DOWNLOAD EBOOK

The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.