Classical Control Systems

Classical Control Systems

Author: Rohan Munasinghe

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9781842657492

DOWNLOAD EBOOK

Begins with a presentation of famous historical feedback control systems such as the water clock and flyball speed governor followed by Plant modeling with the use of a RC circuit (electrical) and shock-absorber (mechanical) alongwith feedback control concept using the same two plants. Time-domain and frequency-domain designs are presented using root-locus and Bode methods with Matlab simulations while PID controller design is discussed with reference to compensators (lead, lag, and notch), controller implementation in analog (using OpAmps) and digital (microcontroller) forms. Illustrations and examples are extensively used to help quick and correct understanding of the subject. The book has been written concisely so that it could be covered within a single semester conveniently. Audience: Undergraduate and Postgraduate Students in Mechanical Engineering


Control Systems

Control Systems

Author: Jitendra R. Raol

Publisher: CRC Press

Published: 2019-07-12

Total Pages: 738

ISBN-13: 1351170783

DOWNLOAD EBOOK

Control Systems: Classical, Modern, and AI-Based Approaches provides a broad and comprehensive study of the principles, mathematics, and applications for those studying basic control in mechanical, electrical, aerospace, and other engineering disciplines. The text builds a strong mathematical foundation of control theory of linear, nonlinear, optimal, model predictive, robust, digital, and adaptive control systems, and it addresses applications in several emerging areas, such as aircraft, electro-mechanical, and some nonengineering systems: DC motor control, steel beam thickness control, drum boiler, motional control system, chemical reactor, head-disk assembly, pitch control of an aircraft, yaw-damper control, helicopter control, and tidal power control. Decentralized control, game-theoretic control, and control of hybrid systems are discussed. Also, control systems based on artificial neural networks, fuzzy logic, and genetic algorithms, termed as AI-based systems are studied and analyzed with applications such as auto-landing aircraft, industrial process control, active suspension system, fuzzy gain scheduling, PID control, and adaptive neuro control. Numerical coverage with MATLAB® is integrated, and numerous examples and exercises are included for each chapter. Associated MATLAB® code will be made available.


Robust Control Systems

Robust Control Systems

Author: Uwe Mackenroth

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 524

ISBN-13: 3662097753

DOWNLOAD EBOOK

Self-contained introduction to control theory that emphasizes on the most modern designs for high performance and robustness. It assumes no previous coursework and offers three chapters of key topics summarizing classical control. To provide readers with a deeper understanding of robust control theory than would be otherwise possible, the text incorporates mathematical derivations and proofs. Includes many elementary examples and advanced case studies using MATLAB Toolboxes.


Feedback Control Theory

Feedback Control Theory

Author: John C. Doyle

Publisher: Courier Corporation

Published: 2013-04-09

Total Pages: 264

ISBN-13: 0486318338

DOWNLOAD EBOOK

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.


CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Volume II

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Volume II

Author: Heinz Unbehauen

Publisher: EOLSS Publications

Published: 2009-10-11

Total Pages: 416

ISBN-13: 1848261411

DOWNLOAD EBOOK

This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.


Control System Design

Control System Design

Author: Bernard Friedland

Publisher: Courier Corporation

Published: 2012-03-08

Total Pages: 530

ISBN-13: 048613511X

DOWNLOAD EBOOK

Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.


Classical Feedback Control with Nonlinear Multi-Loop Systems

Classical Feedback Control with Nonlinear Multi-Loop Systems

Author: Boris J. Lurie

Publisher: CRC Press

Published: 2019-08-02

Total Pages: 630

ISBN-13: 1351011839

DOWNLOAD EBOOK

Classical Feedback Control with Nonlinear Multi-Loop Systems describes the design of high-performance feedback control systems, emphasizing the frequency-domain approach widely used in practical engineering. It presents design methods for high-order nonlinear single- and multi-loop controllers with efficient analog and digital implementations. Bode integrals are employed to estimate the available system performance and to determine the ideal frequency responses that maximize the disturbance rejection and feedback bandwidth. Nonlinear dynamic compensators provide global stability and improve transient responses. This book serves as a unique text for an advanced course in control system engineering, and as a valuable reference for practicing engineers competing in today’s industrial environment.


Linear Control Systems

Linear Control Systems

Author: Branislav Kisacanin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 385

ISBN-13: 1461505534

DOWNLOAD EBOOK

Anyone seeking a gentle introduction to the methods of modern control theory and engineering, written at the level of a first-year graduate course, should consider this book seriously. It contains: A generous historical overview of automatic control, from Ancient Greece to the 1970s, when this discipline matured into an essential field for electrical, mechanical, aerospace, chemical, and biomedical engineers, as well as mathematicians, and more recently, computer scientists; A balanced presentation of the relevant theory: the main state-space methods for description, analysis, and design of linear control systems are derived, without overwhelming theoretical arguments; Over 250 solved and exercise problems for both continuous- and discrete-time systems, often including MATLAB simulations; and Appendixes on MATLAB, advanced matrix theory, and the history of mathematical tools such as differential calculus, transform methods, and linear algebra. Another noteworthy feature is the frequent use of an inverted pendulum on a cart to illustrate the most important concepts of automatic control, such as: Linearization and discretization; Stability, controllability, and observability; State feedback, controller design, and optimal control; and Observer design, reduced order observers, and Kalman filtering. Most of the problems are given with solutions or MATLAB simulations. Whether the book is used as a textbook or as a self-study guide, the knowledge gained from it will be an excellent platform for students and practising engineers to explore further the recent developments and applications of control theory.


Introduction to Linear Control Systems

Introduction to Linear Control Systems

Author: Yazdan Bavafa-Toosi

Publisher: Academic Press

Published: 2017-09-19

Total Pages: 1135

ISBN-13: 012812749X

DOWNLOAD EBOOK

Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.


Introduction to Control Systems

Introduction to Control Systems

Author: D K Anand

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 449

ISBN-13: 1483293742

DOWNLOAD EBOOK

This book is written for use as a text in an introductory course in control systems. The classical as well as the state space approach is included and integrated as much as possible. The first part of the book deals with analysis in the time domain. All the graphical techniques are presented in one chapter and the latter part of the book deals with some advanced material. It is intended that the student should already be familiar with Laplace transformations and have had an introductory course in circuit analysis or vibration theory. To provide the student with an understanding of correlation concepts in control theory, a new chapter dealing with stochastic inputs has been added. Also Appendix\A has been significantly expanded to cover the theory of Laplace transforms and z-transforms. The book includes worked examples and problems for solution and an extensive bibliography as a guide for further reading.