Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics

Author: Frederick W. Byron

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 674

ISBN-13: 0486135063

DOWNLOAD EBOOK

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.


Chaos in Classical and Quantum Mechanics

Chaos in Classical and Quantum Mechanics

Author: Martin C. Gutzwiller

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 445

ISBN-13: 1461209838

DOWNLOAD EBOOK

Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.


From Classical to Quantum Mechanics

From Classical to Quantum Mechanics

Author: Giampiero Esposito

Publisher: Cambridge University Press

Published: 2004-03-11

Total Pages: 612

ISBN-13: 1139450549

DOWNLOAD EBOOK

This 2004 textbook provides a pedagogical introduction to the formalism, foundations and applications of quantum mechanics. Part I covers the basic material which is necessary to understand the transition from classical to wave mechanics. Topics include classical dynamics, with emphasis on canonical transformations and the Hamilton-Jacobi equation, the Cauchy problem for the wave equation, Helmholtz equation and eikonal approximation, introduction to spin, perturbation theory and scattering theory. The Weyl quantization is presented in Part II, along with the postulates of quantum mechanics. Part III is devoted to topics such as statistical mechanics and black-body radiation, Lagrangian and phase-space formulations of quantum mechanics, and the Dirac equation. This book is intended for use as a textbook for beginning graduate and advanced undergraduate courses. It is self-contained and includes problems to aid the reader's understanding.


Problems in Classical and Quantum Mechanics

Problems in Classical and Quantum Mechanics

Author: J. Daniel Kelley

Publisher: Springer

Published: 2016-11-30

Total Pages: 358

ISBN-13: 331946664X

DOWNLOAD EBOOK

This book is a collection of problems that are intended to aid students in graduate and undergraduate courses in Classical and Quantum Physics. It is also intended to be a study aid for students that are preparing for the PhD qualifying exam. Many of the included problems are of a type that could be on a qualifying exam. Others are meant to elucidate important concepts. Unlike other compilations of problems, the detailed solutions are often accompanied by discussions that reach beyond the specific problem.The solution of the problem is only the beginning of the learning process--it is by manipulation of the solution and changing of the parameters that a great deal of insight can be gleaned. The authors refer to this technique as "massaging the problem," and it is an approach that the authors feel increases the pedagogical value of any problem.


Mathematical Topics Between Classical and Quantum Mechanics

Mathematical Topics Between Classical and Quantum Mechanics

Author: Nicholas P. Landsman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 547

ISBN-13: 146121680X

DOWNLOAD EBOOK

This monograph draws on two traditions: the algebraic formulation of quantum mechanics as well as quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability, which leads on to a discussion of the theory of quantization and the classical limit from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. Accessible to mathematicians with some prior knowledge of classical and quantum mechanics, and to mathematical physicists and theoretical physicists with some background in functional analysis.


Advanced Quantum Mechanics

Advanced Quantum Mechanics

Author: Reinhold Blumel

Publisher: Jones & Bartlett Publishers

Published: 2010-04-28

Total Pages: 437

ISBN-13: 1449655904

DOWNLOAD EBOOK

This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.


Geometric Phases in Classical and Quantum Mechanics

Geometric Phases in Classical and Quantum Mechanics

Author: Dariusz Chruscinski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 346

ISBN-13: 0817681760

DOWNLOAD EBOOK

Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.


Geometric Formulation of Classical and Quantum Mechanics

Geometric Formulation of Classical and Quantum Mechanics

Author: G. Giachetta

Publisher: World Scientific

Published: 2011

Total Pages: 405

ISBN-13: 9814313726

DOWNLOAD EBOOK

The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.


Classical and Quantum Information

Classical and Quantum Information

Author: Dan C. Marinescu

Publisher: Academic Press

Published: 2011-01-07

Total Pages: 745

ISBN-13: 0123838754

DOWNLOAD EBOOK

A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. - Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes - Covers both classical and quantum information theory and error correcting codes - The last chapter of the book covers physical implementation of quantum information processing devices - Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information


Classical Systems in Quantum Mechanics

Classical Systems in Quantum Mechanics

Author: Pavel Bóna

Publisher: Springer Nature

Published: 2020-06-23

Total Pages: 243

ISBN-13: 3030450708

DOWNLOAD EBOOK

This book investigates two possibilities for describing classical-mechanical physical systems along with their Hamiltonian dynamics in the framework of quantum mechanics.The first possibility consists in exploiting the geometrical properties of the set of quantum pure states of "microsystems" and of the Lie groups characterizing the specific classical system. The second approach is to consider quantal systems of a large number of interacting subsystems – i.e. macrosystems, so as to study the quantum mechanics of an infinite number of degrees of freedom and to look for the behaviour of their collective variables. The final chapter contains some solvable models of “quantum measurement" describing dynamical transitions from "microsystems" to "macrosystems".