This is the first book to describe most of the issues involved in the transition from a single standard to a Software Radio based wireless terminal. The book is both a technology tutorial for beginners as well as a starting point for technical professionals in the communication and IC design industry who are approaching the design of a Software Defined Radio. A complete overview of the actual state-of-art for reconfigurable transceivers is given in detail.
Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field.
Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design. OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation. Closes the gap between OFDM theory and implementation Enables the reader to transfer communication receiver concepts into hardware design wireless receivers with acceptable implementation loss achieve low-power designs Contains numerous figures to illustrate techniques Features concrete design examples of MC-CDMA systems and cognitive radio applications Presents theoretical discussions that focus on concepts rather than mathematical derivation Provides a much-needed single source of material from numerous papers Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference.
The Second Edition of OFDM Baseband Receiver Design for Wirless Communications, this book expands on the earlier edition with enhanced coverage of MIMO techniques, additional baseband algorithms, and more IC design examples. The authors cover the full range of OFDM technology, from theories and algorithms to architectures and circuits. The book gives a concise yet comprehensive look at digital communication fundamentals before explaining signal processing algorithms in receivers. The authors give detailed treatment of hardware issues - from architecture to IC implementation. Links OFDM and MIMO theory with hardware implementation Enables the reader to transfer communication received concepts into hardware; design wireless receivers with acceptable implemntation loss; achieve low-power designs Covers the latest standards, such as DVB-T2, WiMax, LTE and LTE-A Includes more baseband algorithms, like soft-decoding algorithms such as BCJR and SOVA Expanded treatment of channel models, detection algorithms and MIMO techniques Features concrete design examples of WiMAX systems and cognitive radio apllications Companion website with lecture slides for instructors Based on materials developed for a course in digital communication IC design, this book is ideal for graduate students and researchers in VLSI design, wireless communications, and communications signal processing. Practicing engineers working on algorithms or hardware for wireless communications devices will also find this to be a key reference.
Summarizes cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Includes original contributions from distinguished researchers and professionals. Covers cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Contributors are all leading researchers and professionals in this field.
This book is for RF Engineers and, in particular, those engineers focusing mostly on RF systems and RFIC design. The author develops systematic methods for RF systems design, complete with a comprehensive set of design formulas. Its focus on mobile station transmitter and receiver system design also applies to transceiver design of other wireless systems such as WLAN. This comprehensive reference work covers a wide range of topics from general principles of communication theory, as it applies to digital radio designs to specific examples on implementing multimode mobile systems.
An accessible undergraduate textbook introducing key fundamental principles behind modern communication systems, supported by exercises, software problems and lab exercises.
WIRELESS COMMUNICATION SIGNALS A practical guide to wireless communication systems and concepts Wireless technologies and services have evolved significantly over the last couple of decades, and Wireless Communication Signals offers an important guide to the most recent advances in wireless communication systems and concepts grounded in a practical and laboratory perspective. Written by a noted expert on the topic, the book provides the information needed to model, simulate, test, and analyze wireless system and wireless circuits using modern instrumentation and computer aided design software. Designed as a practical resource, the book provides a clear understanding of the basic theory, software simulation, hardware test, and modeling, system component testing, software and hardware interactions and co-simulations. This important book: Provides organic and harmonized coverage of wireless communication systems Covers a range of systems from radio hardware to digital baseband signal processing Presents information on testing and measurement of wireless communication systems and subsystems Includes MATLAB file codes Written for professionals in the communications industry, technical managers, and researchers in both academia and industry. Wireless Communication Signals introduces wireless communication systems and concepts from both a practical and laboratory perspective.
High-Density and De-Densified Smart Campus Communications Design, deliver, and implement high-density communications solutions High-density campus communications are critical in the operation of densely populated airports, stadiums, convention centers, shopping malls, classrooms, hospitals, dense smart cities, and more. They also drive Smart City and Smart Building use cases as High-Density Communications (HDC) become recognized as an essential fourth utility. However, the unique requirements and designs demanded by HDC make implementation challenging. In High-Density and De-Densified Smart Campus Communications: Technologies, Integration, Implementation and Applications, a team of experienced technology strategists delivers a one-of-a-kind treatment of the requirements, technologies, designs, solutions, and trends associated with HDC. From the functional requirements for HDC and emerging data/Wi-Fi 6/internet access/5G cellular/OTT video, and IoT automation—including pandemic-related de-densification—to the economics of broad deployment of HDC, this book includes coverage of every major issue faced by the professionals responsible for the design, installation, and maintenance of high-density communication networks. It also includes: A thorough introduction to traditional and emerging voice/cellular design for campus applications, including the Distributed Antenna System (DAS) Comprehensive explorations of traditional sensor networks and Internet of Things services approaches Practical discussions of high-density Wi-Fi hotspot connectivity and related technologies, like Wi-Fi 5, Wi-Fi 6, spectrum, IoT, VoWiFi, DASs, microcells issues, and 5G versus Wi-Fi issues In-depth examinations of de-densification, office social distancing, and Ultra-Wideband (UWB) technologies Perfect for telecommunication researchers and engineers, networking professionals, technology planners, campus administrators, and equipment vendors, High-Density Smart Campus Communications will also earn a place in the libraries of senior undergraduate and graduate students in applied communications technologies.