Mass Spectrometry (MS) has rapidly become an indispensable tool in polymer analysis, and modern MS today complements in many ways the structural data provided by Nuclear Magnetic Resonance (NMR) and Infrared (IR) methods. Recent advances have sparked a growing interest in this field and established a need for a summary of progress made and results
The combination of chromatography with mass spectroscopy is a very useful technique which is being increasingly used by polymer chemists to improve existing polymers and to discover new ones with specific physical properties such as thermal stability and retention of properties over a long service life.This technique is extremely powerful for the analysis and characterisation of polymers and is often based on the use of controlled chromatography - mass spectroscopy to measure a polymer's decomposition with techniques such as pyrolysis, followed by chromatography to separate any breakdown product, and, finally, mass spectroscopy, to achieve an unequivocal identification of the pyrolysis products obtained. The detail that can be obtained by such methods includes structure of the polymer backbone, branching, end groups, isomeric detail and fine detail in the structure of copolymers.The first three chapters of the book discuss the various chromatographic and mass spectroscopic techniques now available.Chapters 3-8 cover the complementary methods, based on the combination of mass spectroscopy with various chromatographic techniques such as high-performance liquid chromatography, gas chromatography and supercritical fluid chromatography.Pyrolysis chromatography-mass spectroscopy is a method of studying the structure of polymers which involves subjecting the polymer pyrolysis products to a chromatographic technique to simplify subsequent analysis and, finally mass spectroscopy to identify the pyrolysis products with the possibility of deducing finer details of polymer structure than were previously attainable by classical methods (Chapters 9-11).By providing a thorough up-to-date review of work in this field it is hoped that the book will be of interest to all those engaged in polymer research and development, and polymer users in general.
Combining an up-to-date insight into mass-spectrometric polymer analysis beyond MALDI with application details of the instrumentation, this is a balanced and thorough presentation of the most important and widely used mass-spectrometric methods. Written by the world's most proficient experts in the field, the book focuses on the latest developments, covering such technologies and applications as ionization protocols, tandem and liquid chromatography mass spectrometry, gas-phase ion-separation techniques and automated data processing. Chapters on sample preparation, polymer degradation and the usage of mass-spectrometric tools on an industrial scale round off the book. As a result, both entrants to the field and experienced researchers are able to choose the appropriate methods and instrumentations -- and to assess their respective strengths and limitations -- for the characterization of polymer compounds.
The methodology of analytical pyrolysis-GC/MS has been known for several years, but is seldom used in research laboratories and process control in the chemical industry. This is due to the relative difficulty of interpreting the identified pyrolysis products as well as the variety of them. This book contains full identification of several classes of polymers/copolymers and biopolymers that can be very helpful to the user. In addition, the practical applications can encourage analytical chemists and engineers to use the techniques explored in this volume.The structure and the functions of various types of pyrolyzers and the results of the pyrolysis-gas chromatographic-mass spectrometric identification of synthetic polymers/copolymers and biopolymers at 700°C are described. Practical applications of these techniques are also included, detailing the analysis of microplastics, failure analysis in the automotive industry and solutions for technological problems.
Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques. - Introduces a range of advanced characterization methods, covering aspects such as molecular weight, polydispersity, branching, composition, and tacticity - Enables the reader to understand and to compare the available technique, and implement the selected technique(s), with a view to improving properties of the polymeric material - Establishes a strong link between basic principles, characterization techniques, and real-life applications
In this data book, both conventional Py-GC/MS where thermal energy alone is used to cause fragmentation of given polymeric materials and reactive Py-GC/MS in the presence of organic alkaline for condensation polymers are compiled. Before going into detailed presentation of the data, however, acquiring a firm grip on the proper understanding about the situation of Py-GC/MS would promote better utilization of the following pyrolysis data for various polymers samples. This book incorporates recent technological advances in analytical pyrolysis methods especially useful for the characterization of 163 typical synthetic polymers. The book briefly reviews the instrumentation available in advanced analytical pyrolysis, and offers guidance to perform effectually this technique combining with gas chromatography and mass spectrometry. Main contents are comprehensive sample pyrograms, thermograms, identification tables, and representative mass spectra (MS) of pyrolyzates for synthetic polymers. This edition also highlights thermally-assisted hydrolysis and methylation technique effectively applied to 33 basic condensation polymers. - Coverage of Py-GC/MS data of conventional pyrograms and thermograms of basic 163 kinds of synthetic polymers together with MS and retention index data for pyrolyzates, enabling a quick identification - Additional coverage of the pyrograms and their related data for 33 basic condensation polymers obtained by the thermally-assisted hydrolysis and methylation technique - All compiled data measured under the same experimental conditions for pyrolysis, gas chromatography and mass spectrometry to facilitate peak identification - Surveyable instant information on two facing pages dedicated to the whole data of a given polymer sample
MALDI-TOF mass spectrometry is one of the latest and most fascinating new developments in the analysis of organic compounds. Originally developed for the analysis of biomolecules, it has developed into one of the most powerful techniques for the characterization of synthetic polymers. This book describes the fundamentals of the MALDI process and the technical features of MALDI-TOF instrumentation. It reviews the application of MALDI-TOF for identification, chemical and molar mass analysis of synthetic polymers. With many examples, the monograph examines experimental protocols for the determination of endgroups, the analysis of copolymers and additives, and the coupling of liquid chromatography and MALDI-TOF in detail.
Analytical Methods for Polymer Characterization presents a collection of methods for polymer analysis. Topics include chromatographic methods (gas chromatography, inverse gas chromatography, and pyrolysis gas chromatography), mass spectrometry, spectroscopic methods (ultraviolet-visible spectroscopy, infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance), thermal analysis (differential scanning calorimetry and thermogravimetry), microscopy methods (scanning electron microscopy, transmission electron microscopy, and atomic force microscopy), and x-ray diffraction. The author also discusses mechanical and dynamic mechanical properties.
A comprehensive, practical approach to three powerful methods of polymer analysis and characterization This book serves as a complete compendium of three important methods widely used for the characterization of synthetic and natural polymers—light scattering, size exclusion chromatography (SEC), and asymmetric flow field flow fractionation (A4F). Featuring numerous up-to-date examples of experimental results obtained by light scattering, SEC, and A4F measurements, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation takes an all-in-one approach to deliver a complete and thorough explanation of the principles, theories, and instrumentation needed to characterize polymers from the viewpoint of their molar mass distribution, size, branching, and aggregation. This comprehensive resource: Is the only book gathering light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation into a single text Systematically compares results of size exclusion chromatography with results of asymmetric flow field flow fractionation, and how these two methods complement each other Provides in-depth guidelines for reproducible and correct determination of molar mass and molecular size of polymers using SEC or A4F coupled with a multi-angle light scattering detector Offers a detailed overview of the methodology, detection, and characterization of polymer branching Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation should be of great interest to all those engaged in the polymer analysis and characterization in industrial and university research, as well as in manufacturing quality control laboratories. Both beginners and experienced can confidently rely on this volume to confirm their own understanding or to help interpret their results.