Chiral Matter - Proceedings Of The Nobel Symposium 167

Chiral Matter - Proceedings Of The Nobel Symposium 167

Author: Egor Babaev

Publisher: World Scientific

Published: 2023-02-13

Total Pages: 277

ISBN-13: 9811265070

DOWNLOAD EBOOK

A geometric figure has chirality, or handedness, if its mirror image cannot be brought to coincide with itself. The concept of chirality was instrumental in establishing the tetrahedral valences of the carbon atom, and has continued to play a key role in chemistry and molecular biology ever since.The fact that living organisms use only one of two mirror isomers of such molecules as amino acids and sugars, that is, the question of the origin of homochirality of the molecular basis of life, remains an unsolved problem of the same dignity as the origin of dark matter and dark energy.The increasing importance of chirality and topology in condensed matter physics and chemistry, and the production of new states of matter in heavy-ion collisions, have brought the concept of chirality into physics and cosmology in a tangible way while at the same time expanded the physics/chemistry interface. The book is the first to address all aspects of chirality in a single volume.


Advanced Topics in Quantum Field Theory

Advanced Topics in Quantum Field Theory

Author: M. Shifman

Publisher: Cambridge University Press

Published: 2012-01-19

Total Pages: 641

ISBN-13: 1139501887

DOWNLOAD EBOOK

Since the advent of Yang–Mills theories and supersymmetry in the 1970s, quantum field theory - the basis of the modern description of physical phenomena at the fundamental level - has undergone revolutionary developments. This is the first systematic and comprehensive text devoted specifically to modern field theory, bringing readers to the cutting edge of current research. The book emphasizes nonperturbative phenomena and supersymmetry. It includes a thorough discussion of various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective. Featuring extensive cross-referencing from traditional topics to recent breakthroughs in the field, it prepares students for independent research. The side boxes summarizing the main results and over 70 exercises make this an indispensable book for graduate students and researchers in theoretical physics.


Chiral Nanophotonics

Chiral Nanophotonics

Author: Martin Schäferling

Publisher: Springer

Published: 2016-11-11

Total Pages: 170

ISBN-13: 3319422642

DOWNLOAD EBOOK

This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry.


Introductory Organic Chemistry and Hydrocarbons

Introductory Organic Chemistry and Hydrocarbons

Author: Caio Lima Firme

Publisher: CRC Press

Published: 2019-08-28

Total Pages: 445

ISBN-13: 1351205773

DOWNLOAD EBOOK

A novel proposal for teaching organic chemistry based on a broader and simplified use of quantum chemistry theories and notions of some statistical thermodynamic concepts aiming to enrich the learning process of the organic molecular properties and organic reactions. A detailed physical chemistry approach to teach organic chemistry for undergraduate students is the main aim of this book. A secondary objective is to familiarize undergraduate students with computational chemistry since most of illustrations of optimized geometries (plus some topological graphs) and information is from quantum chemistry outputs which will also enable students to obtain a deeper understanding of organic chemistry.


Chirality, Magnetism and Magnetoelectricity

Chirality, Magnetism and Magnetoelectricity

Author: Eugene Kamenetskii

Publisher: Springer Nature

Published: 2021-03-27

Total Pages: 587

ISBN-13: 3030628442

DOWNLOAD EBOOK

This book discusses theoretical and experimental advances in metamaterial structures, which are of fundamental importance to many applications in microwave and optical-wave physics and materials science. Metamaterial structures exhibit time-reversal and space-inversion symmetry breaking due to the effects of magnetism and chirality. The book addresses the characteristic properties of various symmetry breaking processes by studying field-matter interaction with use of conventional electromagnetic waves and novel types of engineered fields: twisted-photon fields, toroidal fields, and magnetoelectric fields. In a system with a combined effect of simultaneous breaking of space and time inversion symmetries, one observes the magnetochiral effect. Another similar phenomenon featuring space-time inversion symmetries is related to use of magnetoelectric materials. Cross-coupling of the electric and magnetic components in these material structures, leading to the appearance of new magnetic modes with an electric excitation channel – electromagnons and skyrmions – has resulted in a wealth of strong optical effects such as directional dichroism, magnetochiral dichroism, and rotatory power of the fields. This book contains multifaceted contributions from international leading experts and covers the essential aspects of symmetry-breaking effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement. It is ideally suited as an introduction and basic reference work for researchers and graduate students entering this field.


SUSY 95

SUSY 95

Author: I. Antoniadis

Publisher: Atlantica Séguier Frontières

Published: 1996

Total Pages: 646

ISBN-13: 9782863321935

DOWNLOAD EBOOK


Advances in Modern Cosmology

Advances in Modern Cosmology

Author: Adnan Ghribi

Publisher: BoD – Books on Demand

Published: 2011-08-29

Total Pages: 212

ISBN-13: 953307423X

DOWNLOAD EBOOK

The twentieth century elevated our understanding of the Universe from its early stages to what it is today and what is to become of it. Cosmology is the weapon that utilizes all the scientific tools that we have created to feel less lost in the immensity of our Universe. The standard model is the theory that explains the best what we observe. Even with all the successes that this theory had, two main questions are still to be answered: What is the nature of dark matter and dark energy? This book attempts to understand these questions while giving some of the most promising advances in modern cosmology.


Division Algebras:

Division Algebras:

Author: G.M. Dixon

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 242

ISBN-13: 1475723156

DOWNLOAD EBOOK

I don't know who Gigerenzer is, but he wrote something very clever that I saw quoted in a popular glossy magazine: "Evolution has tuned the way we think to frequencies of co-occurances, as with the hunter who remembers the area where he has had the most success killing game." This sanguine thought explains my obsession with the division algebras. Every effort I have ever made to connect them to physics - to the design of reality - has succeeded, with my expectations often surpassed. Doubtless this strong statement is colored by a selective memory, but the kind of game I sought, and still seek, seems to frowst about this particular watering hole in droves. I settled down there some years ago and have never feIt like Ieaving. This book is about the beasts I selected for attention (if you will, to ren der this metaphor politically correct, let's say I was a nature photographer), and the kind of tools I had to develop to get the kind of shots Iwanted (the tools that I found there were for my taste overly abstract and theoretical). Half of thisbook is about these tools, and some applications thereof that should demonstrate their power. The rest is devoted to a demonstration of the intimate connection between the mathematics of the division algebras and the Standard Model of quarks and leptons with U(l) x SU(2) x SU(3) gauge fields, and the connection of this model to lO-dimensional spacetime implied by the mathematics.


Quantum Many-Body Physics in a Nutshell

Quantum Many-Body Physics in a Nutshell

Author: Edward Shuryak

Publisher: Princeton University Press

Published: 2018-11-27

Total Pages: 306

ISBN-13: 0691175608

DOWNLOAD EBOOK

The ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates This book provides an essential introduction to the physics of quantum many-body systems, which are at the heart of atomic and nuclear physics, condensed matter, and particle physics. Unlike other textbooks on the subject, it covers topics across a broad range of physical fields—phenomena as well as theoretical tools—and does so in a simple and accessible way. Edward Shuryak begins with Feynman diagrams of the quantum and statistical mechanics of a particle; in these applications, the diagrams are easy to calculate and there are no divergencies. He discusses the renormalization group and illustrates its uses, and covers systems such as weakly and strongly coupled Bose and Fermi gases, electron gas, nuclear matter, and quark-gluon plasmas. Phenomena include Bose condensation and superfluidity. Shuryak also looks at Cooper pairing and superconductivity for electrons in metals, liquid 3He, nuclear matter, and quark-gluon plasma. A recurring topic throughout is topological matter, ranging from ensembles of quantized vortices in superfluids and superconductors to ensembles of colored (QCD) monopoles and instantons in the QCD vacuum. Proven in the classroom, Quantum Many-Body Physics in a Nutshell is the ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates. Teaches students how quantum many-body systems work across many fields of physics Uses path integrals from the very beginning Features the easiest introduction to Feynman diagrams available Draws on the most recent findings, including trapped Fermi and Bose atomic gases Guides students from traditional systems, such as electron gas and nuclear matter, to more advanced ones, such as quark-gluon plasma and the QCD vacuum