A complete overview covering the application of metal-based chiral Lewis acids from all parts of the periodic table, the Author emphasizes the most recent contributions to the field as well as prominent direction of development. The book discusses the design of chiral complexes as well as a wide spectrum of reactions promoted by various chiral Lewis acids, including water-compatible acids as well as the most important applications in the chemical and pharmaceutical industries. A must-have for catalytic and organic chemists working in the field, both in academia and industry, as well as pharmaceutical and medicinal chemists.
A complete overview covering the application of metal-based chiral Lewis acids from all parts of the periodic table, the Author emphasizes the most recent contributions to the field as well as prominent direction of development. The book discusses the design of chiral complexes as well as a wide spectrum of reactions promoted by various chiral Lewis acids, including water-compatible acids as well as the most important applications in the chemical and pharmaceutical industries. A must-have for catalytic and organic chemists working in the field, both in academia and industry, as well as pharmaceutical and medicinal chemists.
The ASI workshop on "Selectivities in Lewis Acid Promoted Reactions" held in the Emmantina-Hotel in Athens-Glyfada, Greece, October 2-7, 1988 was held to bring some light into the darkness of Lewis acid induced processes. As such the workshop reflects some current trends in organic synthesis, where Lewis acids are becoming a powerful tool in many different modern reactions, e.g. Diels-Alder reactions, Ene reactions, Sakurai reactions, and in general silicon and tin chemistry. The objective of this meeting was to bring together most of the world experts in the field to discuss the major reactions promoted by Lewis acids. Organic synthesis will play a major role in this book connected with some fundamental mechanistic work on allylsilane and -tin chemistry. Both natural product synthesis and unnatural molecules are presented in the chapters. The book presents all the 15 invited lectures and the contributions of 15 posters. I am confident that the material presented in this book will stimulate the chemistry, which has been discussed on our meeting, around the world. The meeting and the book were only possible through a grant of the NATO Scientific Affairs Devision and financial support by the following companies: Kali Chemie (Hannover, W-Germany), E. Merck (Darmstadt, W-Germany), Sandoz (Basel, Switzerland), Schering (Berlin, W-Germany).
Explores the potential of new types of anion-binding catalysts to solve challenging synthetic problems Anion-Binding Catalysis introduces readers to the use of anion-binding processes in catalytic chemical activation, exploring how this approach can contribute to the future design of novel synthetic transformations. Featuring contributions by world-renowned scientists in the field, this authoritative volume describes the structure, properties, and catalytic applications of anions as well as synthetic applications and practical analytical methods. In-depth chapters are organized by type of catalyst rather than reaction type, providing readers with an accessible overview of the existing classes of effective catalysts. The authors discuss the use of halogens as counteranions, the combination of (thio)urea and squaramide-based anion-binding with other types of organocatalysis, anion-binding catalysis by pnictogen and tetrel bonding, nucleophilic co-catalysis, anion-binding catalysis by pnictogen and tetrel bonding, and more. Helping readers appreciate and evaluate the potential of anion-binding catalysis, this timely book: Illustrates the historical development, activation mode, and importance of anion-binding in chemical catalysis Explains the analytic methods used to determine the anion-binding affinity of the catalysts Describes catalytic and synthetic applications of common NH- and OH-based hydrogen-donor catalysts as well as C-H triazole/triazolium catalysts Covers amino-catalysis involving enamine, dienamine, or iminium activation approaches Discusses new trends in the field of anion-binding catalysis, such as the combination of anion-binding with other types of catalysis Presenting the current state of the field as well as the synthetic potential of anion-binding catalysis in future, Anion-Binding Catalysis is essential reading for researchers in both academia and industry involved in organic synthesis, homogeneous catalysis, and pharmaceutical chemistry.
Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organo catalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating activating groups, and describe in detail the different strategies of cooperative activation, highlighting their respective advantages and pitfalls. As a result, readers will learn about the different concepts of cooperative catalysis, their corresponding modes of operation and their applications, thus helping to find a solution to a specific synthetic catalysis problem.
Iodine Catalysis in Organic Synthesis The first book of its kind to highlight iodine as a sustainable alternative to conventional transition metal catalysis Iodine Catalysis in Organic Synthesis provides detailed coverage of recent advances in iodine chemistry and catalysis, focusing on the utilization of various iodine-containing compounds as oxidative catalysts. Featuring contributions by an international panel of leading research chemists, this authoritative volume explores the development of environmentally benign organic reactions and summarizes catalytic transformations of molecular iodine and iodine compounds such as hypervalent organoiodine and inorganic iodine salts. Readers are first introduced to the history of iodine chemistry, the conceptual background of homogeneous catalysis, and the benefits of iodine catalysis in comparison with transition metals. Next, chapters organized by reaction type examine enantioselective transformations, catalytic reactions involving iodine, catalyst states, oxidation in iodine and iodine catalyses, and catalytic reactions based on halogen bonding. Practical case studies and real-world examples of different applications in organic synthesis and industry are incorporated throughout the text. An invaluable guide for synthetic chemists in both academic and industrial laboratories, Iodine Catalysis in Organic Synthesis: Provides a thorough overview of typical iodine-catalyzed reactions, catalyst systems, structures, and reactivity Explores promising industrial applications of iodine-based reagents for organic synthesis Highlights the advantages iodine catalysis has over classical metal-catalyzed reactions Discusses sustainable and eco-friendly methods in hypervalent iodine chemistry Edited by two world authorities on the catalytic applications of organoiodine compounds, Iodine Catalysis in Organic Synthesis is required reading for catalytic, organic, and organometallic chemists, medicinal and pharmaceutical chemists, industrial chemists, and academic researchers and advanced students in relevant fields.
Aldol Reactions provides a comprehensive up-to-date overview of aldol reactions including application of different metal enolates; catalytic aldol additions catalyzed by different Lewis acids and Lewis bases; enantioselective direct aldol additions; antibodies and enzyme catalyzed aldol additions and the recent aggressive development of organocatalyzed aldol additions. The power of each method is demonstrated by several applications in total synthesis of natural products. The pros and cons of these methodologies with regard to stereoselectivity, regioselectivity and application in total synthesis of natural products are discussed. Great importance is set to the diverse possibilities of the manual of aldol reaction to install required configurations in complicated natural product synthesis.
Considering the limited resources of our planet, earth-abundant elements will have to be explored increasingly in the future. This book highlights the uses of the most earth-abundant elements in catalysis and will be of interest to graduates, academic researchers and practitioners in catalysis.
This work describes the essential aspects of enantioselective catalysis, with chapters organised by concept rather than by reaction type. Each concept is supported by examples to give the reader broad exposure to a wide range of catalysts, reactions and reaction mechanisms.
Kurti and Czako have produced an indispensable tool for specialists and non-specialists in organic chemistry. This innovative reference work includes 250 organic reactions and their strategic use in the synthesis of complex natural and unnatural products. Reactions are thoroughly discussed in a convenient, two-page layout--using full color. Its comprehensive coverage, superb organization, quality of presentation, and wealth of references, make this a necessity for every organic chemist. - The first reference work on named reactions to present colored schemes for easier understanding - 250 frequently used named reactions are presented in a convenient two-page layout with numerous examples - An opening list of abbreviations includes both structures and chemical names - Contains more than 10,000 references grouped by seminal papers, reviews, modifications, and theoretical works - Appendices list reactions in order of discovery, group by contemporary usage, and provide additional study tools - Extensive index quickly locates information using words found in text and drawings