The chickpea is an ancient crop that is still important in both developed and developing nations. This authoritative account by international experts covers all aspects of chickpea breeding and management, and the integrated pest management and biotechnology applications that are important to its improvement. With topics covered including origin and taxonomy, ecology, distribution and genetics, this book combines the many and varied research issues impacting on production and utilization of the chickpea crop on its journey from paddock to plate.
This book sheds new light on the chickpea genome sequencing and resequencing of chickpea germplasm lines and provides insights into classical genetics, cytogenetics, and trait mapping. It also offers an overview of the latest advances in genome sequencing and analysis. The growing human population, rapid climate changes and limited amounts of arable land are creating substantial challenges in connection with the availability and affordability of nutritious food for smallholder farmers in developing countries. In this context, climate smart crops are essential to alleviating the hunger of the millions of poor and undernourished people living in developing countries. In addition to cereals, grain legumes are an integral part of the human diet and provide sustainable income for smallholder farmers in the arid and semi-arid regions of the world. Among grain legumes, the chickpea (Cicer arietinum) is the second most important in terms of production and productivity. Besides being a rich source of proteins, it can fix atmospheric nitrogen through symbiosis with rhizobia and increase the input of combined nitrogen. Several abiotic stresses like drought, heat, salinity, together with biotic stresses like Fusarium wilt, Ascochyta blight, and Botrytis grey mould have led to production losses, as the chickpeas is typically grown in the harsh climates of our planet’s semi-arid regions.
Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton. - A crop-based approach to crop physiology in a G x E x M context - Captures the perspectives of global experts on 22 crops
Chickpea is an important protein-rich crop with considerable diversity present among 44 annual Cicer species. A large collection of chickpea germplasm including wild Cicer species has been conserved in different gene banks globally. However, the effective and efficient utilization of these resources is required to develop new cultivars with a broad genetic base. Using core and mini-core collections, chickpea researchers have identified diverse germplasm possessing various beneficial traits that are now being used in chickpea breeding. Further, for chickpea improvement, the genus Cicer harbours alleles/genes for tolerance/resistance to various abiotic and biotic stresses as well as for agronomic and nutrition-related traits. Recent advances in plant biotechnology have resulted in developing large number of markers specific to chickpea in addition to technological breakthrough in developing high-throughput genotyping platforms for unlocking the genetic potential available in germplasm collections.
Pulses have played a major role in human diet and are considered a rich source of proteins. But, the major constraints in achieving the yield of pulses are the occurrences of various diseases and pests. Hence, there is a need to understand major fungal pathogens and their management strategies for sustainable agriculture. The major pulse crops in India and other Asian countries are bengal gram, pigeon pea, black gram, green gram, lentil and peas, which are attacked by several pathogens that cause considerable crop damage. Bengal gram is affected mainly by wilt (Fusarium oxysporum f. sp. ciceri), blight (Mycosphaerella pinodes) and rust (Uromyces ciceris-arietini). The main diseases of pigeon pea are wilt (Fusarium oxysporum) and Phytophtora stem blight (Phytophthora drechsleri f. sp. cajani). Powdery mildew (Erysiphe polygoni) and rust (Uromyces vicia-fabae) are the most important diseases affecting the production of pea. This volume offers details like symptoms, distribution, pathogens associated, predisposing factors and epidemiology, sources of resistance and holistic management of diseases with particular reference to those of economic importance. Several minor diseases of lentil, green gram and of black gram are discussed with their detailed and updated information. This volume provides pooled information regarding the management of major fungal phytopathogens affecting pulses.
Plant Breeding and Cultivar Development features an optimal balance between classical and modern tools and techniques related to plant breeding. Written for a global audience and based on the extensive international experience of the authors, the book features pertinent examples from major and minor world crops. Advanced data analytics (machine learning), phenomics and artificial intelligence are explored in the book's 28 chapters that cover classical and modern plant breeding. By presenting these advancements in specific detail, private and public sector breeding programs will learn about new, effective and efficient implementation. The insights are clear enough that non-plant breeding majoring students will find it useful to learn about the subject, while advanced level students and researchers and practitioners will find practical examples that help them implement their work. - Bridges the gap between conventional breeding practices and state-of-the-art technologies - Provides real-world case studies of a wide range of plant breeding techniques and practices - Combines insights from genetics, genomics, breeding science, statistics, computer science and engineering for crop improvement and cultivar development
Identification of desirable genotypes with traits of interest is discernible for making genetic improvement of crop plants. In this direction, screening of a large number of germplasm for desirable traits and transfer of identified traits into agronomic backgrounds through recombination breeding is the common breeding approach. Although visual screening is easier for qualitative traits, its use is not much effective for quantitative traits and also for those, which are difficult to score visually. Therefore, it is imperative to phenotype the germplasm accessions and breeding materials precisely using high throughput phenomics tools for challenging and complex traits under natural, controlled and harsh environmental conditions. Realizing the importance of phenotyping data towards identification and utilization of a germplasm as donors, global scientific community has exerted increased focus on advancing phenomics in crop plants leading to development of a number of techniques and methodologies for screening of agronomic, physiological, and biochemical traits. These technologies have now become much advanced and entered the era of digital science. This book provides exhaustive information on various aspects related to phenotyping of crop plants and offers a most comprehensive reference on the developments made in traditional and high throughput phenotyping of agricultural crops.
This edited volume summarizes the recent advancements made in plant science including molecular biology and genome editing, particularly in the development of novel pathways tolerant to climate change-induced stresses such as drought, extreme temperatures, cold, salinity, flooding, etc. These stresses are liable for decrease in yields in many crop plants at global level. Till date conventional plant breeding approaches have resulted in significant improvement of crop plants for producing higher yields during adverse climatic conditions. However, the pace of improvement through conventional plant breeding needs to be accelerated in keeping with the growing demand of food and increasing human populationl, particularly in developing world. This book serves as a comprehensive reference material for researchers, teachers, and students involved in climate change-related abiotic stress tolerance studies in plants.