This monograph is devoted to recent mathematical theories on the bottom up self-organization observed in closed and isolated thermo-dynamical systems. Its main features include:
This book is to be a new edition of Applied Analysis. Several fundamental materials of applied and theoretical sciences are added, which are needed by the current society, as well as recent developments in pure and applied mathematics. New materials in the basic level are the mathematical modelling using ODEs in applied sciences, elements in Riemann geometry in accordance with tensor analysis used in continuum mechanics, combining engineering and modern mathematics, detailed description of optimization, and real analysis used in the recent study of PDEs. Those in the advance level are the integration of ODEs, inverse Strum Liouville problems, interface vanishing of the Maxwell system, method of gradient inequality, diffusion geometry, mathematical oncology. Several descriptions on the analysis of Smoluchowski-Poisson equation in two space dimension are corrected and extended, to ensure quantized blowup mechanism of this model, particularly, the residual vanishing both in blowup solution in finite time with possible collision of sub-collapses and blowup solutions in infinite time without it.
Mathematical models are used to describe the essence of the real world, and their analysis induces new predictions filled with unexpected phenomena.In spite of a huge number of insights derived from a variety of scientific fields in these five hundred years of the theory of differential equations, and its extensive developments in these one hundred years, several principles that ensure these successes are discovered very recently.This monograph focuses on one of them: cancellation of singularities derived from interactions of multiple species, which is described by the language of geometry, in particular, that of global analysis.Five objects of inquiry, scattered across different disciplines, are selected in this monograph: evolution of geometric quantities, models of multi-species in biology, interface vanishing of d - δ systems, the fundamental equation of electro-magnetic theory, and free boundaries arising in engineering.The relaxation of internal tensions in these systems, however, is described commonly by differential forms, and the reader will be convinced of further applications of this principle to other areas.
This book discusses vortex dynamics theory from physics, mathematics, and engineering perspectives. It includes nine chapters that cover a variety of research results related to vortex dynamics including nonlinear optics, fluid dynamics, and plasma physics.
This review volume, co-edited by Nobel laureate G Ertl, provides a broad overview on current studies in the understanding of design and control of complex chemical systems of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemical reactors. Self-organizational behavior and the emergence of coherent collective dynamics in reaction diffusion systems, reactive soft matter and chemical networks are covered. Special attention is paid to the applications in molecular cell biology and to the problems of biological evolution, synthetic biology and design of artificial living cells. Starting with a detailed introduction on the history of research on complex chemical systems, its current state of the art and perspectives, the book comprises 19 chapters that survey the current progress in particular research fields. The reviews, prepared by leading international experts, yield together a fascinating picture of a rapidly developing research discipline that brings chemical engineering to new frontiers.
This book covers at an advanced level the most fundamental ideas, concepts and methods in the field of applications of fuzzy logic to the study of neural cell behavior. Motivation and awareness are examined from a physiological and biochemical perspective illustrating fuzzy mechanisms of complex systems.
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.
This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.
This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS