Chemistry: The Key to our Sustainable Future is a collection of selected contributed papers by participants of the International Conference on Pure and Applied Chemistry (ICPAC 2012) on the theme of “Chemistry: The Key for our Future” held in Mauritius in July 2012. In light of the significant contribution of chemistry to benefit of mankind, this book is a collection of recent results generated from research in chemistry and interdisciplinary areas. It covers topics ranging from nanotechnology, natural product chemistry to analytical and environmental chemistry. Chemistry: The Key to our Sustainable Future is written for graduates, postgraduates, researchers in industry and academia who have an interest in the fields ranging from fundamental to applied chemistry.
Through innovative design, creation, processing, use, and disposal of substances, the chemical industry plays a major role in advancing applications to support sustainability in a way that will allow humanity to meet current environmental, economic, and societal needs without compromising the progress and success of future generations. Based on a workshop held in February 2005 that brought together a broad cross section of disciplines and organizations in the chemical industry, this report identifies a set of overarching Grand Challenges for Sustainability research in chemistry and chemical engineering to assist the chemical industry in defining a sustainability agenda. These Grand Challenges include life cycle analysis, renewable chemical feedstocks, and education, among others.
#1 NEW YORK TIMES BEST SELLER • In this urgent, authoritative book, Bill Gates sets out a wide-ranging, practical—and accessible—plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Bill Gates has spent a decade investigating the causes and effects of climate change. With the help of experts in the fields of physics, chemistry, biology, engineering, political science, and finance, he has focused on what must be done in order to stop the planet's slide to certain environmental disaster. In this book, he not only explains why we need to work toward net-zero emissions of greenhouse gases, but also details what we need to do to achieve this profoundly important goal. He gives us a clear-eyed description of the challenges we face. Drawing on his understanding of innovation and what it takes to get new ideas into the market, he describes the areas in which technology is already helping to reduce emissions, where and how the current technology can be made to function more effectively, where breakthrough technologies are needed, and who is working on these essential innovations. Finally, he lays out a concrete, practical plan for achieving the goal of zero emissions—suggesting not only policies that governments should adopt, but what we as individuals can do to keep our government, our employers, and ourselves accountable in this crucial enterprise. As Bill Gates makes clear, achieving zero emissions will not be simple or easy to do, but if we follow the plan he sets out here, it is a goal firmly within our reach.
This edited book of proceedings is a collection of twelve selected and peer-reviewed contributions from the Virtual Conference on Chemistry and its Applications (VCCA-2022). VCCA-2022 was held online from 8th to 12th August 2022. The theme of the conference was "Resilience and Sustainable Research through Basic Sciences". 500 participants from 55 countries participated in VCCA-2022. This volume 3 reflects the chapters covering analytical aspects.
Integrating Green and Sustainable Chemistry Principles into Education draws on the knowledge and experience of scientists and educators already working on how to encourage green chemistry integration in their teaching, both within and outside of academia. It highlights current developments in the field and outlines real examples of green chemistry education in practice, reviewing initiatives and approaches that have already proven effective. By considering both current successes and existing barriers that must be overcome to ensure sustainability becomes part of the fabric of chemistry education, the book's authors hope to drive collaboration between disciplines and help lay the foundations for a sustainable future. - Draws on the knowledge and expertise of scientists and educators already working to encourage green chemistry integration in their teaching, both within and outside of academia - Highlights current developments in the field and outlines real examples of green chemistry education in practice, reviewing initiatives and approaches that have already proven effective - Considers both current successes and existing barriers that must be overcome to ensure sustainability
Nanomaterials for Air Remediation provides a comprehensive description of basic knowledge and current research progress in the field of air treatment using nanomaterials. The book explores how nanomaterials are used in various air remediation techniques, including advanced oxidation processes, biological processes, and filtration. It also covers their combined use as nanocatalysts, nanoantibiotics, nanoadsorbents, nanocontainers, nanofiltrations and nanosensors. Major challenges to using nanomaterials for improving air quality on a mass scale, both practical and regulatory, are also presented. This is an important resource for materials scientists and environmental engineers who are looking to understand how nanotechnology is used to enhance air quality. - Includes coverage of a wide range of nanomaterials, from biochemical to chemical materials, and nanomaterials supported photocatalysts - Discusses how the properties of nanomaterials are being used to make more efficient air purification systems and products - Assesses the practical and regulatory challenges of using different types of nanomaterials for air remediation
Nanotechnology safety is the practice of handling engineered nanomaterials in production and manufacturing. Good practice consists of understanding and interpreting Material Safety Data Sheets, behaving safely when working with yet unknown nanomaterials, understanding health effects, and proactively creating safety measures against potential hazards. This book addresses nanotechnology risk management.
In the International Year of Chemistry, prominent scientists highlight the major advances in the fight against the largest problems faced by humanity from the point of view of chemistry, showing how their science is essential to ensuring our long-term survival. Following the UN Millennium Development Goals, the authors examine the ten most critical areas, including energy, climate, food, water and health. All of them are opinion leaders in their fields, or high-ranking decision makers in national and international institutions. Intended to provide an intellectual basis for the future development of chemistry, this book is aimed at a wide readership including students, professionals, engineers, scientists, environmentalists and anyone interested in a more sustainable future.
For decades an increasingly rapid urbanization pace, modern industrial development, and constantly intensive agricultural practices have caused controlled or uncontrolled release of hazardous contaminants that seriously threaten our environment. All natural spheres (atmosphere, hydrosphere, biosphere, lithosphere, and anthroposphere) seem to have been exposed to harmful practices and emerging research in nanomaterials is now trying to combat their adverse impact on physical ecosystems and organisms, as well as human health. In this context, pollution remediation at the nanoscale has come to the forefront for its potential to unlock sustainable, highly efficient, and cost-effective technologies, capable to restore in situ or ex situ land, water, and air resources. Nanotechnology to Monitor, Remedy, and Prevent Pollution covers design, fabrication, and extensive applications of engineered nanostructured materials in various shapes and morphologies (such as nanoparticles, wires, tubes, fibres) that, because of their size, surface-to-volume ratio, and high reactivity, function as catalysts and adsorbents of organic pollutants (aliphatic and aromatic hydrocarbons), gases, chemicals (arsenic, manganese, iron, nitrate, heavy metals), antibiotics, and biological entities (bacteria, viruses, parasites). Their integration with biotechnological processes for monitoring and prevention of pollution is also explored alongside the invisible dangers caused by noise. This is a valuable book for academics, researchers, undergraduate and postgraduate students working on environmental engineering for sustainability, environmental sciences, biotechnology, and nanotechnology.? - Comprehensively presents applications of state-of-the-art nanotechnologies and nanomaterials for control, prevention, and removal of persistent air, water, and soil pollutants. - Provides a new benchmark for pros and cons of established processes for nano remediation, revealing the importance of such research beyond national boundaries and policies. - Classifies noise as a contaminant and discusses how its real impacts on human and animal life can be limited through impedance-matching nanotechnology.