This book covers the chemistry of the major processes involved in the manufacture of integrated circuits. The authors describe all the major processes in use, together with some interesting processes which are currently being developed and hold future promise. Each chapter covers the current state of knowledge of the underlying chemistry of a particular process, and identifies areas of uncertainty requiring further research.
The first comprehensive guide to the chemicals and gases used in semiconductor manufacturing The fabrication of semiconductor devices involves a series of complex chemical processes such as photolithography, etching, cleaning, thin film deposition, and polishing. Until now, there has been no convenient source of information on the properties, applications, and health and safety considerations of the chemicals used in these processes. The Handbook of Chemicals and Gases for the Semiconductor Industry meets this need. Each of the Handbook's eight chapters is related to a specific area of semiconductor processing. The authors provide a brief overview of each step in the process, followed by tables containing physical properties, handling, safety, and other pertinent information on chemicals and gases typically used in these processes. The 270 chemical and gas entries include data on physical properties, emergency treatment procedures, waste disposal, and incompatible materials, as well as descriptions of applications, chemical mechanisms involved, and references to the literature. Appendices cross-reference entries by process, chemical name, and CAS number. The Handbook's eight chapters are: Thin Film Deposition Materials Wafer Cleaning Materials Photolithography Materials Wet and Dry Etching Materials Chemical Mechanical Planarizing Methods Carrier Gases Uncategorized Materials Semiconductor Chemicals Analysis No other single source brings together these useful and important data on chemicals and gases used in the manufacture of semiconductor devices. The Handbook of Chemicals and Gases for the Semiconductor Industry will be a valuable reference for process engineers, scientists, suppliers to the semiconductor industry, microelectronics researchers, and students.
This book contains a comprehensive review of CMP (Chemical-Mechanical Planarization) technology, one of the most exciting areas in the field of semiconductor technology. It contains detailed discussions of all aspects of the technology, for both dielectrics and metals. The state of polishing models and their relation to experimental results are covered. Polishing tools and consumables are also covered. The leading edge issues of damascene and new dielectrics as well as slurryless technology are discussed.
Fred Aftalion's international perspective of the history of chemistry integrates the story of chemical science with that of chemical industry. This new edition includes events from 1990 to 2000, when major companies began selling off their divisions, seeking to specialize in a particular business. Aftalion explores the pitfalls these companies encountered as well as the successes of "contrarians"--those companies that remained broad and diversified. He uses BASF, Dow, and Bayer as examples of true contrarians.
For courses in Semiconductor Manufacturing Technology, IC Fabrication Technology, and Devices: Conventional Flow. This up-to-date text on semiconductor manufacturing processes takes into consideration the rapid development of the industry's technology. It thoroughly describes the complicated and new IC chip fabrication processes in detail with minimum mathematics, physics, and chemistry. Advanced technologies are covered along with older ones to assist students in understanding the development processes from a historic point of view.
A practical guide to semiconductor manufacturing from processcontrol to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Controlcovers all issues involved in manufacturing microelectronic devicesand circuits, including fabrication sequences, process control,experimental design, process modeling, yield modeling, and CIM/CAMsystems. Readers are introduced to both the theory and practice ofall basic manufacturing concepts. Following an overview of manufacturing and technology, the textexplores process monitoring methods, including those that focus onproduct wafers and those that focus on the equipment used toproduce wafers. Next, the text sets forth some fundamentals ofstatistics and yield modeling, which set the foundation for adetailed discussion of how statistical process control is used toanalyze quality and improve yields. The discussion of statistical experimental design offers readers apowerful approach for systematically varying controllable processconditions and determining their impact on output parameters thatmeasure quality. The authors introduce process modeling concepts,including several advanced process control topics such asrun-by-run, supervisory control, and process and equipmentdiagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and managementof overall manufacturing systems * Chapters include case studies, sample problems, and suggestedexercises * Instructor support includes electronic copies of the figures andan instructor's manual Graduate-level students and industrial practitioners will benefitfrom the detailed exami?nation of how electronic materials andsupplies are converted into finished integrated circuits andelectronic products in a high-volume manufacturingenvironment. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment. An Instructor Support FTP site is also available.
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.
This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits. The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes. The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning etc.
This textbook contains all the materials that an engineer needs to know to start a career in the semiconductor industry. It also provides readers with essential background information for semiconductor research. It is written by a professional who has been working in the field for over two decades and teaching the material to university students for the past 15 years. It includes process knowledge from raw material preparation to the passivation of chips in a modular format.
Chemical growth methods of electronic materials are the keystone of microelectronic device processing. This book discusses the applications of metalorganic chemistry for the vapor phase deposition of compound semiconductors. Vapor phase methods used for semiconductor deposition and the materials properties that make the organometallic precursors useful in the electronics industry are discussed for a variety of materials. Topics included: * techniques for compound semiconductor growth * metalorganic precursors for III-V MOVPE * metalorganic precursors for II-VI MOVPE * single-source precursors * chemical beam epitaxy * atomic layer epitaxy Several useful appendixes and a critically selected, up-to-date list of references round off this practical handbook for materials scientists, solid-state and organometallic chemists, and engineers.