Discussing specific depositions of a wide range of semiconductors and properties of the resulting films, Chemical Solution Deposition of Semiconductor Films examines the processes involved and explains the effect of various process parameters on final film and film deposition outcomes through the use of detailed examples. Supplying experimental res
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing
This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. - Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices - Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more - Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. - Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications - Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques - Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing
This book explores chemical methods for thin film deposition with diverse nanostructured morphology and their applications. Unlike top-down techniques, chemical methods offer low cost, simplicity, and growth of nanostructured surface architecture with ease of small to large-scale area deposition. The book primarily focuses on innovative twelve chemical methods for thin-film deposition on one platform. Since each method has its own advantages and disadvantages, it is crucial to select the specific method for specific material to be deposited depending upon what type of application is targeted. Due to inclusive of diverse chemical deposition methods, researcher will have knowledge about best choice of the deposition method to be adopted. Inclusive methods discussed in the book are chemical bath deposition, successive ionic layer adsorption and reaction, ion exchange, electroless deposition, electrodeposition, hydrothermal, spray pyrolysis, spin coating, dip coating, doctor blade, screen printing, and sol-gel. The selection of the correct procedure for material to be deposited in thin film form depends on its unique process parameters based on the kind of application and its requirement. The role of preparative factors necessary for thin film alters properties related to structure and surface morphology, electrical conductivity and optical band gap which have been extensively discussed along with the underlying science of film synthesis. The book provides a comprehensive overview of the field of chemical methods for thin film synthesis to applications. In addition to synthesis, the book covers characterization, instrumentation, and industrial application of thin films. As a result, concentrated techniques will be of great interest to university/college professors, students and new engineers as well as postdocs and scientists in the area.
This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.
Discover the materials set to revolutionize the electronics industry The search for electronic materials that can be cheaply solution-processed into films, while simultaneously providing quality device characteristics, represents a major challenge for materials scientists. Continuous semiconducting thin films with large carrier mobilities are particularly desirable for high-speed microelectronic applications, potentially providing new opportunities for the development of low-cost, large-area, flexible computing devices, displays, sensors, and solar cells. To date, the majority of solution-processing research has focused on molecular and polymeric organic films. In contrast, this book reviews recent achievements in the search for solution-processed inorganic semiconductors and other critical electronic components. These components offer the potential for better performance and more robust thermal and mechanical stability than comparable organic-based systems. Solution Processing of Inorganic Materials covers everything from the more traditional fields of sol-gel processing and chemical bath deposition to the cutting-edge use of nanomaterials in thin-film deposition. In particular, the book focuses on materials and techniques that are compatible with high-throughput, low-cost, and low-temperature deposition processes such as spin coating, dip coating, printing, and stamping. Throughout the text, illustrations and examples of applications are provided to help the reader fully appreciate the concepts and opportunities involved in this exciting field. In addition to presenting the state-of-the-art research, the book offers extensive background material. As a result, any researcher involved or interested in electronic device fabrication can turn to this book to become fully versed in the solution-processed inorganic materials that are set to revolutionize the electronics industry.