This new book offers research and updates on the chemical process in liquid and solid phases. The collection of topics in this book reflect the diversity of recent advances in chemical processes with a broad perspective that will be useful to scientists as well as graduate students and engineers. The book will help to fill the gap between theory and practice in industry.
Unlike many other references, Radiation-Chemical Processes in Solid Phase analyzes experimental data on radiolysis in terms of solid-state physics. It traces the effect exerted by media from primary processes of radiation-substance interaction to final products. The authors consider the main chemically active elementary excitations arising under irradiation of solids and discuss the mechanisms of chemical reactions induced by them. They present the general principles of solid-state and molecular physics, and cover numerous radiation-chemical processes.
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
This book provides you with a sound foundation for understanding abstract concepts (eg physical properties such as fugacity, etc or chemical processes, ie distillation, etc) of phase and reaction equilibria and shows you how to apply these concepts to solve practical problems using numerous and clear examples.
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.
Over the last decades several researchers discovered that children, pupils and even young adults develop their own understanding of "how nature really works". These pre-concepts concerning combustion, gases or conservation of mass are brought into lectures and teachers have to diagnose and to reflect on them for better instruction. In addition, there are ‘school-made misconceptions’ concerning equilibrium, acid-base or redox reactions which originate from inappropriate curriculum and instruction materials. The primary goal of this monograph is to help teachers at universities, colleges and schools to diagnose and ‘cure’ the pre-concepts. In case of the school-made misconceptions it will help to prevent them from the very beginning through reflective teaching. The volume includes detailed descriptions of class-room experiments and structural models to cure and to prevent these misconceptions.
This book focuses on chemical reactions and processing under extreme conditions—how materials react with highly concentrated active species and/or in a very confined high-temperature and high-pressure volume. Those ultimate reaction environments created by a focused laser beam, discharges, ion bombardments, or microwaves provide characteristic nano- and submicron-sized products and functional nanostructures. The book explores the chemistry and processing of metals and non-metals as well as molecules that are strongly dependent on the energy deposition processes and character of the materials. Descriptions of a wide range of topics are given from the perspective of a variety of research methodologies, material preparations, and applications. The reader is led to consider and review how a high-energy source interacts with materials, and what the key factors are that determine the quality and quantity of nanoproducts and nano-processing.
Transport Phenomena in Dispersed Media addresses the main problems associated with the transfer of heat, mass and momentum. The authors focus on the analytical solutions of the mass and heat transfer equations; the theoretical problems of coalescence, coagulation, aggregation and fragmentation of dispersed particles; the rheology of structured aggregate and kinetically stable disperse systems; the precipitation of particles in a turbulent flow; the evolution of the distribution function; the stochastic counterpart of the mass transfer equations; the dissipation of energy in disperse systems; and many other problems that distinguish this book from existing publications. Key Selling Features Covers all technological processes taking place in the oil and gas complex, as well as in the petrochemical industry Presents new original solutions for calculating design as well as for the development and implementation of processes of chemical technology Organized to first provide an extensive review of each chapter topic, solve specific problems, and then review the solutions with the reader Contains complex mathematical expressions for practical calculations Compares results obtained on the basis of mathematical models with experimental data
The book gives a systematic introduction to green chemistry principles and technologies in inorganic and organic chemistry, polymer sciences and pharmaceutical industry. It also discusses the use of biomass and marine resources for synthesis as well as renewable energy utilization and the concepts and evaluation of recycling economy and eco-industrial parks.
This new edition includes brand-new developments in the modeling of processes in the column apparatuses. It analyzes the radial velocity component and axial variation in the axial velocity in the column. These models are described in five new chapters. The book presents models of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze a broad range of processes (simple and complex chemical reactions, physical and chemical absorption, physical and chemical adsorption, catalytic reactions in the cases of physical and chemical adsorption mechanism), and make it possible to model sulfur dioxide gas purification processes.