Chemical Looping Systems for Fossil Energy Conversions

Chemical Looping Systems for Fossil Energy Conversions

Author: Liang-Shih Fan

Publisher: John Wiley & Sons

Published: 2011-02-14

Total Pages: 353

ISBN-13: 1118063139

DOWNLOAD EBOOK

This book presents the current carbonaceous fuel conversion technologies based on chemical looping concepts in the context of traditional or conventional technologies. The key features of the chemical looping processes, their ability to generate a sequestration-ready CO2 stream, are thoroughly discussed. Chapter 2 is devoted entirely to the performance of particles in chemical looping technology and covers the subjects of solid particle design, synthesis, properties, and reactive characteristics. The looping processes can be applied for combustion and/or gasification of carbon-based material such as coal, natural gas, petroleum coke, and biomass directly or indirectly for steam, syngas, hydrogen, chemicals, electricity, and liquid fuels production. Details of the energy conversion efficiency and the economics of these looping processes for combustion and gasification applications in contrast to those of the conventional processes are given in Chapters 3, 4, and 5.Finally, Chapter 6 presents additional chemical looping applications that are potentially beneficial, including those for H2 storage and onboard H2 production, CO2 capture in combustion flue gas, power generation using fuel cell, steam-methane reforming, tar sand digestion, and chemicals and liquid fuel production. A CD is appended to this book that contains the chemical looping simulation files and the simulation results based on the ASPEN Plus software for such reactors as gasifier, reducer, oxidizer and combustor, and for such processes as conventional gasification processes, Syngas Chemical Looping Process, Calcium Looping Process, and Carbonation-Calcination Reaction (CCR) Process. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.


Multiscale Study of Chemical Looping Technology and Its Applications for Low Carbon Energy Conversions

Multiscale Study of Chemical Looping Technology and Its Applications for Low Carbon Energy Conversions

Author: Liang Zeng

Publisher:

Published: 2012

Total Pages: 245

ISBN-13:

DOWNLOAD EBOOK

Abstract: The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO2 by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.


Process/Equipment Co-Simulation on Syngas Chemical Looping Process

Process/Equipment Co-Simulation on Syngas Chemical Looping Process

Author:

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO2 by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.


23 European Symposium on Computer Aided Process Engineering

23 European Symposium on Computer Aided Process Engineering

Author: Calin-Cristian Cormos

Publisher: Elsevier Inc. Chapters

Published: 2013-06-10

Total Pages: 18

ISBN-13: 0128085320

DOWNLOAD EBOOK

Reducing greenhouse gas emissions generated from energy sector in the following years is a compulsory step to the transition to low carbon resource efficient economy. Among various methods to reduce CO2 emissions, Carbon Capture and Storage (CCS) technologies have a special importance. A promising carbon capture method to be applied in energy conversion processes for reducing the energy penalty associated with carbon capture is based on chemical looping systems. This paper investigates CO2 capture based on chemical looping systems suitable to be applied in an IGCC plant for energy vectors poly-generation with emphasis on hydrogen and power co-generation case. The coal-based IGCC cases produce about 400 – 600 MW net electricity and a flexible hydrogen output from zero up to 150 MW hydrogen (based on hydrogen lower heating value) with almost total carbon capture rate of the used fossil fuel. A particular accent is put in the paper on the assessment of process integration issues of gasifier island and syngas conditioning line with the chemical looping unit, mathematical modeling and simulation of whole plant, thermal and power integration of chemical looping unit in the whole IGCC plant (using pinch analysis) and discussing quality specifications for captured CO2 stream considering storage in geological formations or using for EOR.


Chemical Looping Partial Oxidation

Chemical Looping Partial Oxidation

Author: Liang-Shih Fan

Publisher: Cambridge University Press

Published: 2017-10-12

Total Pages: 497

ISBN-13: 1108160417

DOWNLOAD EBOOK

This is the first comprehensive guide to the principles and techniques of chemical looping partial oxidation. With authoritative explanations from a pioneer of the chemical looping process, you will: • Gain a holistic overview of metal oxide reaction engineering, with coverage of ionic diffusion, nanostructure formation, morphological evolution, phase equilibrium, and recyclability properties of metal oxides during redox reactions • Learn about the gasification of solid fuels, the reforming of natural gas, and the catalytic conversion of methane to olefins • Understand the importance of reactor design and process integration in enabling metal oxide oxygen carriers to produce desired products • Discover other applications of catalytic metal oxides, including the production of maleic anhydride and solar energy conversions Aspen Plus® simulation software and results accompany the book online. This is an invaluable reference for researchers and industry professionals in the fields of chemical, energy and environmental engineering, and students studying process design and optimization.


Handbook of Chemical Looping Technology

Handbook of Chemical Looping Technology

Author: Ronald W. Breault

Publisher: John Wiley & Sons

Published: 2019-01-22

Total Pages: 488

ISBN-13: 3527342028

DOWNLOAD EBOOK

This comprehensive and up-to-date handbook on this highly topical field, covering everything from new process concepts to commercial applications. Describing novel developments as well as established methods, the authors start with the evaluation of different oxygen carriers and subsequently illuminate various technological concepts for the energy conversion process. They then go on to discuss the potential for commercial applications in gaseous, coal, and fuel combustion processes in industry. The result is an invaluable source for every scientist in the field, from inorganic chemists in academia to chemical engineers in industry.


Iron-based Chemical Looping Gasification Technologies for Flexible Syngas Production from Fossil Fuels with Carbon-di-oxide Capture

Iron-based Chemical Looping Gasification Technologies for Flexible Syngas Production from Fossil Fuels with Carbon-di-oxide Capture

Author: Mandar V. Kathe

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The following study entails process simulations and techno-economic analysis based investigations of novel chemical looping partial oxidation processes. The moving bed reactor system analyzed in this dissertation provides chemical looping technologies several intrinsic advantages over conventional energy processing schemes. Chapter 2 focusses on optimizing the counter-current moving bed chemical looping system for H2 production from natural gas. The chemical looping process for H2 production from natural gas is optimized based on isothermal thermodynamic limits of an iron-based counter-current moving bed reactor system. The iso-thermal analysis is followed by a parametric sensitivity for energy balance for satisfying the auto-thermal heat balance. This is completed by computing temperature swings based on a net heat duty calculation for individual chemical looping reactors. Overall the chemical looping process is shown to have a cold gas efficiency of 77.6% (HHV basis) and an effective thermal efficiency of 75.1% (HHV basis), both of which are significantly higher than the baseline case. Chapter 3 discusses the Shale gas to Syngas process for integration into a Gas to Liquid fuel (GTL) plant. Following the methodology for an isothermal and an adiabatic analysis from Chapter 2, Chapter 3 identifies a suitable auto-thermal operating condition for the chemical looping reactors. The process simulation model is used to derive cost estimates based on standard engineering assumptions and completes a sensitivity analysis for several important economic parameters. The STS process is shown to require significantly lower natural gas feedstock than the conventional process baseline for producing the same amount of liquid fuels. The STS process lowers the capital cost investment for the syngas production section of a GTL plant by over 50% and if commercialized can be disruptive to liquid fuel production markets. Chapter 4 discusses the Coal to syngas (CTS) process for its technical and economic performance when integrated into a 10,000 tpd methanol plant. This chapter details the equipment sizing philosophy and cost methodology used in this dissertation for calculating economic performance of the novel processes developed. Further, sensitivity studies which analyze effect of economic parameters like the capital charge factor, natural gas price are considered to identify the critical technology parameters necessary to be de-risked for pilot scale and commercial scale operation of the CTS technology. The CTS process reduced the coal consumption by 14% for the same amount of methanol production. The CTS process also reduced the methanol required selling price by 21% over the corresponding baseline case with greater than 90% carbon capture. Chapter 5 discusses the two reducer chemical looping configurations and the fixed bed chemical looping configurations. The two reducer chemical looping configurations provide the flexibility for designing two different reducer reactors, each optimized to a specific fuel feedstock. The two reducer chemical looping configurations can improve over thermodynamic performance of a single reducer chemical looping configuration by providing the flexibility to get high solids conversion with high fuel conversions. The fixed bed operating strategy opens up ways to operate iron-based chemical looping system without solids circulation for high-efficiency production of syngas.


Energy Conversion Engineering

Energy Conversion Engineering

Author: Ahmed F. Ghoniem

Publisher: Cambridge University Press

Published: 2021-11-11

Total Pages: 842

ISBN-13: 1108803997

DOWNLOAD EBOOK

This unique textbook equips students with the theoretical and practical tools needed to model, design, and build efficient and clean low-carbon energy systems. Students are introduced to thermodynamics principles including chemical and electrochemical thermodynamics, moving onto applications in real-world energy systems, demonstrating the connection between fundamental concepts and theoretical analysis, modelling, application, and design. Topics gradually increase in complexity, nurturing student confidence as they build towards the use of advanced concepts and models for low to zero carbon energy conversion systems. The textbook covers conventional and emerging renewable energy conversion systems, including efficient fuel cells, carbon capture cycles, biomass utilisation, geothermal and solar thermal systems, hydrogen and low-carbon fuels. Featuring numerous worked examples, over 100 multi-component homework problems, and online instructor resources including lecture slides, solutions, and sample term projects, this textbook is the perfect teaching resource for an advanced undergraduate and graduate-level course in energy conversion engineering.


Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture

Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture

Author: Paul Fennell

Publisher: Elsevier

Published: 2015-05-21

Total Pages: 467

ISBN-13: 0857097601

DOWNLOAD EBOOK

Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical looping Provides a lucid explanation of advanced concepts and developments in calcium and chemical looping, high pressure systems, and alternative CO2 carriers Presents information on the market development, economics, and deployment of these systems


Reactor and Process Design in Sustainable Energy Technology

Reactor and Process Design in Sustainable Energy Technology

Author: Fan Shi

Publisher: Elsevier

Published: 2014-07-28

Total Pages: 302

ISBN-13: 0444595783

DOWNLOAD EBOOK

Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy technology Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics Expert accounts of reactor types, processing, and optimization Figures and tables designed to comprehensively present concepts and proceduresHundreds of citations drawing on many most recent and previously published works on the subject