This volume in the Coulson and Richardson series in chemical engineering contains full worked solutions to the problems posed in volume 1. Whilst the main volume contains illustrative worked examples throughout the text, this book contains answers to the more challenging questions posed at the end of each chapter of the main text.These questions are of both a standard and non-standard nature, and so will prove to be of interest to both academic staff teaching courses in this area and to the keen student. Chemical engineers in industry who are looking for a standard solution to a real-life problem will also find the book of considerable interest.* An invaluable source of information for the student studying the material contained in Chemical Engineering Volume 1* A helpful method of learning - answers are explained in full
Chemical Engineering Volume 2 covers the properties of particulate systems, including the character of individual particles and their behaviour in fluids. Sedimentation of particles, both singly and at high concentrations, flow in packed and fluidised beads and filtration are then examined. The latter part of the book deals with separation processes, such as distillation and gas absorption, which illustrate applications of the fundamental principles of mass transfer introduced in Chemical Engineering Volume 1. In conclusion, several techniques of growing importance - adsorption, ion exchange, chromatographic and membrane separations, and process intensification - are described. - A logical progression of chemical engineering concepts, volume 2 builds on fundamental principles contained in Chemical Engineering volume 1 and these volumes are fully cross-referenced - Reflects the growth in complexity and stature of chemical engineering over the last few years - Supported with further reading at the end of each chapter and graded problems at the end of the book
Coulson and Richardson's Chemical Engineering has been fully revised and updated to provide practitioners with an overview of chemical engineering. Each reference book provides clear explanations of theory and thorough coverage of practical applications, supported by case studies. A worldwide team of editors and contributors have pooled their experience in adding new content and revising the old. The authoritative style of the original volumes 1 to 3 has been retained, but the content has been brought up to date and altered to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic.Coulson and Richardson's Chemical Engineering: Volume 1A: Fluid Flow: Fundamentals and Applications, Seventh Edition, covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers. - Covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers - Includes reference material converted from textbooks - Explores topics, from foundational through technical - Includes emerging applications, numerical methods, and computational tools
Coulson and Richardson's Chemical Engineering has been fully revised and updated to provide practitioners with an overview of chemical engineering. Each reference book provides clear explanations of theory and thorough coverage of practical applications, supported by case studies. A worldwide team of editors and contributors have pooled their experience in adding new content and revising the old. The authoritative style of the original volumes 1 to 3 has been retained, but the content has been brought up to date and altered to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic. Coulson and Richardson's Chemical Engineering: Volume 1B: Heat and Mass Transfer: Fundamentals and Applications, Seventh Edition, covers two of the main transport processes of interest to chemical engineers: heat transfer and mass transfer, and the relationships among them. - Covers two of the three main transport processes of interest to chemical engineers: heat transfer and mass transfer, and the relationships between them - Includes reference material converted from textbooks - Explores topics, from foundational through technical - Includes emerging applications, numerical methods, and computational tools
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
Hydrodynamics, Mass and Heat Transfer in Chemical Engineering contains a concise and systematic exposition of fundamental problems of hydrodynamics, heat and mass transfer, and physicochemical hydrodynamics, which constitute the theoretical basis of chemical engineering in science. Areas covered include: fluid flows; processes of chemical engineeri
This new book brings together innovative research, new concepts, and novel developments in the application of informatics tools for applied chemistry and computer science. It presents a modern approach to modeling and calculation and also looks at experimental design in applied chemistry and chemical engineering. The volume discusses the developments of advanced chemical products and respective tools to characterize and predict the chemical material properties and behavior. Providing numerous comparisons of different methods with one another and with different experiments, not only does this book summarize the classical theories, but it also exhibits their engineering applications in response to the current key issues. Recent trends in several areas of chemistry and chemical engineering science, which have important application to practice, are discussed. Applied Chemistry and Chemical Engineering: Volume 1: Mathematical and Analytical Techniques provides valuable information for chemical engineers and researchers as well as for graduate students. It demonstrates the progress and promise for developing chemical materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications. Volume 2 will focus principles and methodologies in applied chemistry and chemical engineering.
Coulson and Richardson's Chemical Engineering: Volume 2A: Particulate Systems and Particle Technology, Sixth Edition, has been fully revised and updated to provide practitioners with an overview of chemical engineering, including clear explanations of theory and thorough coverage of practical applications, all supported by case studies. A worldwide team of contributors has pooled their experience to revise old content and add new content. The content has been updated to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic. Fluid Flow, Heat Transfer and Mass Transfer has been developed from the series' volume 1, 6th edition. This volume covers the three main transport process of interest to chemical engineers: momentum transfer (fluid flow), heat transfer and mass transfer and the relationships between them. Particulate Systems and Particle Technology has been developed from the series' volume 2, 5th edition. This volume covers the properties of particulate systems, including the character of individual particles and their behavior in fluids. Sedimentation of particles, both singly and at high concentrations, flow in packed and fluidized beads and filtration are then examined. Separation Processes has been developed from the series' volume 2, 5th edition. This volume covers distillation and gas absorption, which illustrate applications of the fundamental principles of mass transfer. Several techniques—adsorption, ion exchange, chromatographic and membrane separations, and process intensification—are described. Chemical and Biochemical Reactors and Reaction Engineering has been developed from the series' volume 3, 3rd edition. - Features fully revised reference material converted from textbooks - Covers foundational to technical topics - Features emerging applications, numerical methods and computational tools