Chemical Beam Epitaxy and Related Techniques

Chemical Beam Epitaxy and Related Techniques

Author: John S. Foord

Publisher: John Wiley & Sons

Published: 1997-12-08

Total Pages: 472

ISBN-13:

DOWNLOAD EBOOK

Chemical Beam Epitaxy (CBE), is a powerful growth technique which has come to prominence over the last ten years. Together with the longer established molecular beam epitaxy (MBE) and metal organic vapour phase epitaxy (MOVPE), CBE provides a capability for the epitaxial growth of semiconductor and other advanced materials with control at the atomic limit. This, the first book dedicated to CBE, and closely related techniques comprises chapters by leading research workers in the field and provides a detailed overview of the state-of-the-art in this area of semiconductor technology. Topics covered include equipment design and safety considerations, design of chemical precursors, surface chemistry and growth mechanisms, materials and devices from arsenide, phosphide, antimonide, silicon and II-VI compounds, doping, selected area epitaxy and etching. The volume provides an introduction for those new to the field and a detailed summary for experienced researchers.


Molecular Beam Epitaxy

Molecular Beam Epitaxy

Author: Mohamed Henini

Publisher: Elsevier

Published: 2018-06-27

Total Pages: 790

ISBN-13: 0128121378

DOWNLOAD EBOOK

Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community


Organometallic Vapor-Phase Epitaxy

Organometallic Vapor-Phase Epitaxy

Author: Gerald B. Stringfellow

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 417

ISBN-13: 0323139175

DOWNLOAD EBOOK

Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the special structures required for device applications. In addition, a comprehensive summary detailing the OMVPE results observed to date in a wide range of III-V and II-VI semiconductors is provided. This includes a comparison of results obtained through the use of other epitaxial techniques such as molecular beam epitaxy (MBE), liquid-phase epitaxy (LPE), and vapor phase epitaxy using halide transport.


Molecular Beam Epitaxy

Molecular Beam Epitaxy

Author: Marian A. Herman

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 394

ISBN-13: 3642970982

DOWNLOAD EBOOK

This first-ever monograph on molecular beam epitaxy (MBE) gives a comprehensive presentation of recent developments in MBE, as applied to crystallization of thin films and device structures of different semiconductor materials. MBE is a high-vacuum technology characterized by relatively low growth temperature, ability to cease or initiate growth abruptly, smoothing of grown surfaces and interfaces on an atomic scale, and the unique facility for in situ analysis of the structural parameters of the growing film. The excellent exploitation parameters of such MBE-produced devices as quantum-well lasers, high electron mobility transistors, and superlattice avalanche photodiodes have caused this technology to be intensively developed. The main text of the book is divided into three parts. The first presents and discusses the more important problems concerning MBE equipment. The second discusses the physico-chemical aspects of the crystallization processes of different materials (mainly semiconductors) and device structures. The third part describes the characterization methods which link the physical properties of the grown film or structures with the technological parameters of the crystallization procedure. Latest achievements in the field are emphasized, such as solid source MBE, including silicon MBE, gas source MBE, especially metalorganic MBE, phase-locked epitaxy and atomic-layer epitaxy, photoassisted molecular layer epitaxy and migration enhanced epitaxy.


Molecular Beam Epitaxy

Molecular Beam Epitaxy

Author: Hajime Asahi

Publisher: John Wiley & Sons

Published: 2019-04-15

Total Pages: 510

ISBN-13: 111935501X

DOWNLOAD EBOOK

Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.


Molecular Beam Epitaxy and Heterostructures

Molecular Beam Epitaxy and Heterostructures

Author: L.L. Chang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 718

ISBN-13: 940095073X

DOWNLOAD EBOOK

The NATO Advanced Study Institute on "Molecular Beam Epitaxy (MBE) and Heterostructures" was held at the Ettore Majorana Center for Scientific Culture, Erice, Italy, on March 7-19, 1983, the second course of the International School of Solid-State Device Re search. This volume contains the lectures presented at the Institute. Throughout the history of semiconductor development, the coupling between processing techniques and device structures for both scientific investigations and technological applications has time and again been demonstrated. Newly conceived ideas usually demand the ultimate in existing techniques, which often leads to process innova tions. The emergence of a process, on the other hand, invariably creates opportunities for device improvement and invention. This intimate relationship between the two has most recently been witnessed in MBE and heterostructures, the subject of this Institute. This volume is divided into several sections. Chapter 1 serves as an introduction by providing a perspective of the subject. This is followed by two sections, each containing four chapters, Chapters 2-5 addressing the principles of the MBE process and Chapters 6-9 describ ing its use in the growth of a variety of semiconductors and heteros tructures. The next two sections, Chapters to-II and Chapters 12-15, treat the theory and the electronic properties of the heterostructures, respectively. The focus is on energy quantization of the two dimensional electron system. Chapters 16-17 are devoted to device structures, including both field-effect transistors and lasers and detec tors.


Atomic and Molecular Beams

Atomic and Molecular Beams

Author: Cyril Bernard Lucas

Publisher: CRC Press

Published: 2013-12-13

Total Pages: 396

ISBN-13: 1466561033

DOWNLOAD EBOOK

Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens. The book not only provides the basic expressions essential to beam design but also offers in-depth coverage of: Design of ovens and furnaces for atomic beam production Creation of atomic beams that require higher evaporation temperatures Theory of beam formation including the Clausing equation and the transmission probability Construction of collimating arrays in metals, plastics, glass, and other materials Optimization of the design of atomic beam collimators While many review articles and books discuss the application of atomic beams, few give technical details of their production. Focusing on practical application in the laboratory, the author critically reviews over 800 references to compare the atomic and molecular beam formation theories with actual experiments. Atomic and Molecular Beams: Production and Collimation is a comprehensive source of material for experimentalists facing the design of any atomic or molecular beam and theoreticians wishing to extend the theory.


InP-Based Materials and Devices

InP-Based Materials and Devices

Author: Osamu Wada

Publisher: Wiley-Interscience

Published: 1999-04-13

Total Pages: 616

ISBN-13:

DOWNLOAD EBOOK

A comprehensive guide to current techniques, applications, and trends in InP-based technologies. Introducing one of the hottest technologies in the semiconductor industry, this collection of articles by international leading experts covers the state of the art of indium phosphide (InP)-based materials and devices. From current industry practices to cutting-edge developments to promising research trends, each chapter describes a particular aspect of the technology, giving scientists and engineers the necessary information, including physical principles and technical know-how, to design, apply, and troubleshoot these high-performance, low-cost components for diverse systems-TDM and WDM optical systems or microwave and millimeter-wave systems. The advantages and challenges still to overcome of InP-based semiconductors as compared with the more mature GaAs technology are also thoroughly reviewed. Presented in an easy-to-understand tutorial style, with topics cross-referenced between chapters, InP-Based Materials and Devices features more than 1,500 references as well as 365 figures and tables. Key topics include: * Basic materials physics involved in a wide range of InP-based compounds. * Growth of high-purity bulk and heterostructure epitaxy, including MOCVD, MBE, and GS-MBE. * Hetero-interface control and dry process techniques for device fabrication. * High-performance heterojunction-FETs and HEMTs as well as HBTs for high-speed IC and MMIC applications. * Lasers, amplifiers, and modulators as well as photodiodes and receivers for high-speed and WDM networks. * Optoelectronic integration and packing for functional, low-cost modules.


Molecular Beam Epitaxy

Molecular Beam Epitaxy

Author: Robin F.C. Farrow

Publisher: Elsevier

Published: 1995-12-31

Total Pages: 795

ISBN-13: 0815518404

DOWNLOAD EBOOK

In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.


Epitaxy

Epitaxy

Author: Marian A. Herman

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 530

ISBN-13: 3662070642

DOWNLOAD EBOOK

In a uniform and comprehensive manner the authors describe all the important aspects of the epitaxial growth processes of solid films on crystalline substrates, e.g. processes in which atoms of the growing film mimic the arrangement of the atoms of the substrate. Emphasis is put on sufficiently fundamental and unequivocal presentation of the subject in the form of an easy-to-read review. A large part of this book focuses on the problems of heteroepitaxy. The most important epitaxial growth techniques which are currently widely used in basic research as well as in manufacturing processes of devices are presented and discussed in detail.