Charge and Spin Transport in Disordered Graphene-Based Materials

Charge and Spin Transport in Disordered Graphene-Based Materials

Author: Dinh Van Tuan

Publisher: Springer

Published: 2015-10-22

Total Pages: 162

ISBN-13: 3319255711

DOWNLOAD EBOOK

This thesis presents an in-depth theoretical analysis of charge and spin transport properties in complex forms of disordered graphene. It relies on innovative real space computational methods of the time-dependent spreading of electronic wave packets. First a universal scaling law of the elastic mean free path versus the average grain size is predicted for polycrystalline morphologies, and charge mobilities of up to 300.000 cm2/V.s are determined for 1 micron grain size, while amorphous graphene membranes are shown to behave as Anderson insulators. An unprecedented spin relaxation mechanism, unique to graphene and driven by spin/pseudospin entanglement is then reported in the presence of weak spin-orbit interaction (gold ad-atom impurities) together with the prediction of a crossover from a quantum spin Hall Effect to spin Hall effect (for thallium ad-atoms), depending on the degree of surface ad-atom segregation and the resulting island diameter.


Introduction to Graphene-Based Nanomaterials

Introduction to Graphene-Based Nanomaterials

Author: Luis E. F. Foa Torres

Publisher: Cambridge University Press

Published: 2020-01-30

Total Pages: 479

ISBN-13: 1108476996

DOWNLOAD EBOOK

An introduction to the electrical and transport properties of graphene and other two-dimensional nanomaterials.


Light-Emitting Diodes and Photodetectors

Light-Emitting Diodes and Photodetectors

Author: Maurizio Casalino

Publisher: BoD – Books on Demand

Published: 2021-09-29

Total Pages: 208

ISBN-13: 1839685557

DOWNLOAD EBOOK

This book provides a detailed overview of the most recent advances in the fascinating world of light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), and photodetectors (PDs). Chapters in Section 1 discuss the different types and designs of LEDs/OLEDs and their use in light output, color rendering, and more. Chapters in Section 2 examine innovative structures, emerging materials, and physical effects of PDs. This book is a useful resource for students and scientists working in the field of photonics and advanced technologies.


Charge and Spin Transport in Disordered Graphene-based Materials

Charge and Spin Transport in Disordered Graphene-based Materials

Author: Van Tuan Dinh

Publisher:

Published: 2014

Total Pages: 228

ISBN-13: 9788449046056

DOWNLOAD EBOOK

Esta tesis está enfocada en la modelización y simulación del transporte de carga y spin en materiales bidimensionales basados en Grafeno, así como en el impacto de la policristalinidad en el rendimiento de transistores de efecto campo diseñados con este tipo de materiales. Para este estudio se ha utilizado la metodología de transporte Kubo-Greenwood, la cual presenta grandes ventajas a la hora de realizar cálculos numéricos en sistemas microscópicos con el fin de obtener las propiedades de transporte de carga. Este trabajo cubre todos los tipos de desorden que pueden tener lugar en Grafeno, desde vacantes a la posible adsorción de especies químicas a lo largo de las fronteras de grano en el caso de Grafeno policristalino. Además tiene en cuenta importantes efectos cuánticos, como las interferencias cuánticas y los efectos debidos al acoplamiento spin-órbita intrínseco y extrínseco. Para el transporte de spin, se ha desarrollado un nuevo método basado en el formalismo de transporte en espacio real de orden O(N). Este nuevo método permite explorar y entender los mecanismos de relajación de spin en Grafeno y sus derivados. A partir de esta nueva metodología ha sido posible descubrir un nuevo mecanismo de relajación de spin basado en el acoplamiento entre spin y pseudospin (en presencia de un acoplamiento spin-órbita extrínseco o Rashba) que podría ser el mecanismo principal que gobierna la rápida relajación de spin observada experimentalmente en muestras de grafeno de alta calidad.


Spin Dynamics in Two-Dimensional Quantum Materials

Spin Dynamics in Two-Dimensional Quantum Materials

Author: Marc Vila Tusell

Publisher: Springer Nature

Published: 2021-11-10

Total Pages: 169

ISBN-13: 3030861147

DOWNLOAD EBOOK

This thesis focuses on the exploration of nontrivial spin dynamics in graphene-based devices and topological materials, using realistic theoretical models and state-of-the-art quantum transport methodologies. The main outcomes of this work are: (i) the analysis of the crossover from diffusive to ballistic spin transport regimes in ultraclean graphene nonlocal devices, and (ii) investigation of spin transport and spin dynamics phenomena (such as the (quantum) spin Hall effect) in novel topological materials, such as monolayer Weyl semimetals WeTe2 and MoTe2. Indeed, the ballistic spin transport results are key for further interpretation of ultraclean spintronic devices, and will enable extracting precise values of spin diffusion lengths in diffusive transport and guide experiments in the (quasi)ballistic regime. Furthermore, the thesis provides an in-depth theoretical interpretation of puzzling huge measured efficiencies of the spin Hall effect in MoTe2, as well as a prediction of a novel canted quantum spin Hall effect in WTe2 with spins pointing in the yz plane.


Introduction to Graphene-Based Nanomaterials

Introduction to Graphene-Based Nanomaterials

Author: Luis E. F. Foa Torres

Publisher: Cambridge University Press

Published: 2014-01-23

Total Pages: 425

ISBN-13: 1107030838

DOWNLOAD EBOOK

A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.


Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Author: Evgeny Y. Tsymbal

Publisher: CRC Press

Published: 2019-06-26

Total Pages: 631

ISBN-13: 0429805268

DOWNLOAD EBOOK

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.


Noise in Spintronics

Noise in Spintronics

Author: Farkhad Aliev

Publisher: CRC Press

Published: 2018-09-04

Total Pages: 352

ISBN-13: 1351617397

DOWNLOAD EBOOK

This book covers the main physical mechanisms and the different contributions (1/f noise, shot noise, etc.) behind electronic fluctuations in various spintronic devices. It presents the first comprehensive summary of fundamental noise mechanisms in both electronic and spintronic devices and is therefore unique in that aspect. The pedagogic introduction to noise is complemented by a detailed description of how one could set up a noise measurement experiment in the lab. A further extensive description of the recent progress in understanding and controlling noise in spintronics, including the boom in 2D devices, molecular spintronics, and field sensing, is accompanied by both numerous bibliography references and tens of case studies on the fundamental aspects of noise and on some important qualitative steps to understand noise in spintronics. Moreover, a detailed discussion of unsolved problems and outlook make it an essential textbook for scientists and students desiring to exploit the information hidden in noise in both spintronics and conventional electronics.


Graphene

Graphene

Author: Wonbong Choi

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 374

ISBN-13: 1439861889

DOWNLOAD EBOOK

Since the late 20th century, graphene-a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice-has garnered appreciable attention as a potential next-generation electronic material due to its exceptional properties. These properties include high current density, ballistic transport, chemical inertness,


Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials

Author: Sekhar Chandra Ray

Publisher: Elsevier

Published: 2020-01-15

Total Pages: 241

ISBN-13: 0128176814

DOWNLOAD EBOOK

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials offers coverage of electronic structure, magnetic properties and their spin injection, and the transport properties of DLC, graphene, graphene oxide, carbon nanotubes, fullerenes, and their different composite materials. This book is a valuable resource for those doing research or working with carbon and carbon-related nanostructured materials for electronic and magnetic devices. Carbon-based nanomaterials are promising for spintronic applications because their weak spin-orbit (SO) coupling and hyperfine interaction in carbon atoms entail exceptionally long spin diffusion lengths (~100μm) in carbon nanotubes and graphene. The exceptional electronic and transport features of carbon nanomaterials could be exploited to build multifunctional spintronic devices. However, a large spin diffusion length comes at the price of small SO coupling, which limits the possibility of manipulating electrons via an external applied field. - Assesses the relative utility of a variety of carbon-based nanomaterials for spintronics applications - Analyzes the specific properties that make carbon and carbon nanostructured materials optimal for spintronics and magnetic applications - Discusses the major challenges to using carbon nanostructured materials as magnetic agents on a mass scale