Nanocrystal Quantum Dots

Nanocrystal Quantum Dots

Author: Victor I. Klimov

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 485

ISBN-13: 1420079271

DOWNLOAD EBOOK

A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.


Organic Semiconductors for Optoelectronics

Organic Semiconductors for Optoelectronics

Author: Hiroyoshi Naito

Publisher: John Wiley & Sons

Published: 2021-08-02

Total Pages: 388

ISBN-13: 1119146100

DOWNLOAD EBOOK

Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.


Organic Molecular Crystals

Organic Molecular Crystals

Author: E. Silin̦š

Publisher: American Institute of Physics

Published: 1994

Total Pages: 466

ISBN-13:

DOWNLOAD EBOOK

Market: Specialists, researchers, and students in solid-state physics, materials science, electronics, chemical physics, organic and physical chemistry, and molecular biophysics. This monograph focuses on the interaction processes of excitons and charge carriers with the local environment, including the polarization and localization phenomena and the formation of polaronic quasi- particles. Transport phenomena are discussed and directly correlated with interaction dynamics, which actually determine the time- and temperature-dependent transiton of charge carriers and excitons from a coherent to a diffusive mode of motion.


Device Architecture and Materials for Organic Light-Emitting Devices

Device Architecture and Materials for Organic Light-Emitting Devices

Author: Sarah Schols

Publisher: Springer Science & Business Media

Published: 2011-05-10

Total Pages: 163

ISBN-13: 9400716087

DOWNLOAD EBOOK

Device Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 μs can be applied to this structure without affecting the light intensity, suggesting that pulsed excitation might be useful to reduce the accumulation of triplets in the device. The combination of all these properties makes the OLED with field-effect electron transport particularly interesting for waveguide devices and future electrically pumped lasers. In addition, triplet-emitter doped organic materials, as well as the use of triplet scavengers in conjugated polymers are investigated.


Defects in Organic Semiconductors and Devices

Defects in Organic Semiconductors and Devices

Author: Thien-Phap Nguyen

Publisher: John Wiley & Sons

Published: 2023-07-27

Total Pages: 292

ISBN-13: 1394229445

DOWNLOAD EBOOK

Defects play a key role in the physical properties of semiconductors and devices, and their identification is essential in assessing the reliability of electronic devices. Defects in Organic Semiconductors and Devices introduces the fundamental aspects of defects in organic semiconductors and devices in relation to the structure of materials and architecture of electronic components. It covers the topics of defect formation and evolution, defect measurement techniques and their adaption to organic devices, the effects of defects on the physical properties of materials and their effects on the performance and lifetime of organic devices. Identifying defects and determining their characteristics in the structure of organic devices such as OLEDs, OFETs and OPVs make it possible to better understand degradation processes and develop solutions to improve the reliability of such devices. This book is intended for researchers and students in university programs or engineering schools who are specializing in electronics, energy and materials.


Charge Transport in Disordered Solids with Applications in Electronics

Charge Transport in Disordered Solids with Applications in Electronics

Author: Sergei Baranovski

Publisher: John Wiley & Sons

Published: 2006-09-22

Total Pages: 530

ISBN-13:

DOWNLOAD EBOOK

The field of charge conduction in disordered materials is a rapidly evolving area owing to current and potential applications of these materials in various electronic devices This text aims to cover conduction in disordered solids from fundamental physical principles and theories, through practical material development with an emphasis on applications in all areas of electronic materials. International group of contributors Presents basic physical concepts developed in this field in recent years in a uniform manner Brings up-to-date, in a one-stop source, a key evolving area in the field of electronic materials


Electronic Processes in Organic Semiconductors

Electronic Processes in Organic Semiconductors

Author: Anna Köhler

Publisher: John Wiley & Sons

Published: 2015-06-08

Total Pages: 436

ISBN-13: 3527332928

DOWNLOAD EBOOK

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.


Thermoelectrics for Power Generation

Thermoelectrics for Power Generation

Author: Mikhail Nikitin

Publisher: BoD – Books on Demand

Published: 2016-12-21

Total Pages: 574

ISBN-13: 9535128450

DOWNLOAD EBOOK

Thermoelectrics for Power Generation - A Look at Trends in the Technology is the first part of the InTech collection of international community works in the field of thermoelectric power generation. The authors from many counties have presented in this book their achievements and vision for the future development in different aspects of thermoelectric power generation. Remarkably, this hot topic unites together efforts of researchers and engineers from all continents of our planet. The reader will find in the book a lot of new interesting information concerning prospective materials for thermoelectric generators, both inorganic and organic; results of theoretical studies of materials characteristics; novel methods and apparatus for measuring performance of thermoelectric materials and devices; and thermoelectric power generator simulation, modeling, design, and practice.


The Physics of Solar Energy Conversion

The Physics of Solar Energy Conversion

Author: Juan Bisquert

Publisher: CRC Press

Published: 2020-06-09

Total Pages: 725

ISBN-13: 0429000146

DOWNLOAD EBOOK

Research on advanced energy conversion devices such as solar cells has intensified in the last two decades. A broad landscape of candidate materials and devices were discovered and systematically studied for effective solar energy conversion and utilization. New concepts have emerged forming a rather powerful picture embracing the mechanisms and limitation to efficiencies of different types of devices. The Physics of Solar Energy Conversion introduces the main physico-chemical principles that govern the operation of energy devices for energy conversion and storage, with a detailed view of the principles of solar energy conversion using advanced materials. Key Features include: Highlights recent rapid advances with the discovery of perovskite solar cells and their development. Analyzes the properties of organic solar cells, lithium ion batteries, light emitting diodes and the semiconductor materials for hydrogen production by water splitting. Embraces concepts from nanostructured and highly disordered materials to lead halide perovskite solar cells Takes a broad perspective and comprehensively addresses the fundamentals so that the reader can apply these and assess future developments and technologies in the field. Introduces basic techniques and methods for understanding the materials and interfaces that compose operative energy devices such as solar cells and solar fuel converters.


Electronic Processes in Organic Semiconductors

Electronic Processes in Organic Semiconductors

Author: Anna Köhler

Publisher: John Wiley & Sons

Published: 2015-03-17

Total Pages: 424

ISBN-13: 3527685146

DOWNLOAD EBOOK

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.