Copper Wire Bonding

Copper Wire Bonding

Author: Preeti S Chauhan

Publisher: Springer Science & Business Media

Published: 2013-09-20

Total Pages: 254

ISBN-13: 1461457610

DOWNLOAD EBOOK

This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks. Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material. However, copper wire bonding has several process and reliability concerns due to its material properties. Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation. In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed. The book also discusses best practices and recommendations on the bond process, bond–pad metallurgies, and appropriate reliability tests for copper wire-bonded electronic components. In summary, this book: Introduces copper wire bonding technologies Presents copper wire bonding processes Discusses copper wire bonding metallurgies Covers recent advancements in copper wire bonding including the bonding process, equipment changes, bond–pad materials and surface finishes Covers the reliability tests and concerns Covers the current implementation of copper wire bonding in the electronics industry Features 120 figures and tables Copper Wire Bonding is an essential reference for industry professionals seeking detailed information on all facets of copper wire bonding technology.


Statistical Techniques and Non-destructive Testing Methods for Copper Wire Bond Reliability Investigation

Statistical Techniques and Non-destructive Testing Methods for Copper Wire Bond Reliability Investigation

Author: Michael David Hook

Publisher:

Published: 2018

Total Pages: 174

ISBN-13:

DOWNLOAD EBOOK

Microelectronic devices require packaging for mechanical protection and electrical interconnections. Reliability challenges in microelectronics packaging are becoming more severe, as applications demand smaller package sizes and operation in harsher environments, such as in automotive applications. At the same time, manufacturers are seeking to reduce production costs by using new materials, for example in wire bonding by replacing costly gold wire with more economical copper. Because microelectronic devices are expected to function reliably for years or even decades, depending on the application, reliability testing is commonly accelerated, e.g. by using elevated temperature and/or humidity. Even so, testing is often time consuming, requiring weeks or months for product qualification. Furthermore, although standard test conditions exist, little guidance is available in the literature to indicate how long products passing these tests will survive in operation. Non-destructive testing methods provide a great deal of information regarding product degradation and reliability. With proper statistical analysis, strong conclusions can be made about device reliability with relatively short test durations, since testing need not continue until all samples fail. However, data analysis techniques used in the electronics packaging literature are often limited, with statistical analyses and confidence bounds rarely presented. Analysis of incomplete or censored data requires specialized techniques from the field of survival analysis. The contributions of this thesis can be divided in two topics. The first topic is the equipment and techniques used to obtain new reliability results, including a method for temperature calibration of the miniature ovens used, a modification of those ovens for use as environmental chambers with humidity control, and procedures for optimization of wire bonding processes. Second, statistical techniques for analysis of reliability data are demonstrated, using accelerated failure time models to analyze resistance data from copper wire bonds in high temperature storage testing. In doing so, new information was provided to answer an important open question in the field of copper wire bonding, namely, the maximum temperature at which one can expect copper wire bonds on aluminum metallization to perform reliably. In particular, ball bonds made from 25 μm diameter palladium-coated copper wire are estimated to be highly reliable up to at least 167 °C in a clean environment without encapsulation, with failure rate of only 1 ppm after 12000 h. PCC wires were more reliable than bare Cu wires when unencapsulated or when encapsulated in silicone. Conversely, bare Cu was more reliable than PCC when encapsulated in epoxy. The best-performing encapsulated bonds tested were bare Cu wire with a highly heat tolerant epoxy, which are estimated to survive 12000 h with 1 ppm failure probability at 159 °C. Effects of several other factors on bond reliability were also investigated, namely the cleaning process, Al bond pad thickness, and the bonded ball size. Sample and environmental cleanliness were found to be critical to good reliability. Bond pad thickness and bonded ball size had only minor effects on reliability, suggesting that these factors can be safely chosen to satisfy other requirements such as bond pad pitch or current-carrying requirements.


Wire Bonding in Microelectronics

Wire Bonding in Microelectronics

Author: George Harman

Publisher: McGraw Hill Professional

Published: 2009-06-05

Total Pages: 448

ISBN-13: 007164265X

DOWNLOAD EBOOK

The Industry Standard Guide to Wire Bonding--Fully Updated The definitive resource on the critical process of connecting semiconductors with their packages, Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. COVERAGE INCLUDES: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fifine-pitch, specialized-looping, soft-substrate, and extremetemperature wire bonds Copper, low-dielectric-constant (Cu/Lo-k) technology and problems Wire bonding process modeling and simulation CD includes all the book's full-color figures plus animations


WIRE BONDING IN MICROELECTRONICS, 3/E

WIRE BONDING IN MICROELECTRONICS, 3/E

Author: George Harman

Publisher: McGraw-Hill Education

Published: 2010-02-10

Total Pages: 446

ISBN-13: 9780071476232

DOWNLOAD EBOOK

The Industry Standard Guide to Wire Bonding--Fully Updated The definitive resource on the critical process of connecting semiconductors with their packages. Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. COVERAGE INCLUDES: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bonds Copper, low-dielectric-constant (Cu/Lo-k) technology and problems Wire bonding process modeling and simulation CD includes all of the book's full-color figures plus animations.


Istfa 2003

Istfa 2003

Author: ASM International

Publisher: ASM International

Published: 2003-01-01

Total Pages: 534

ISBN-13: 1615030867

DOWNLOAD EBOOK


Advanced Wirebond Interconnection Technology

Advanced Wirebond Interconnection Technology

Author: Shankara K. Prasad

Publisher: Springer Science & Business Media

Published: 2006-05-10

Total Pages: 694

ISBN-13: 1402077637

DOWNLOAD EBOOK

From the reviews: "This book is intended for an assembly production house setting, appropriate for management, designers, chief operators, as well as wirebond production engineers. Operational issues such as specifying and optimizing wire and automatic bonders for a product line are included. The book is very good with "visual" explanations for quick grasping of the issues. In addition, the fundamental metallurgical or mechanical root causes behind material and process choices are presented. The book has a clear prose style and a very readable font and page layout. The figures, although effective, are simply low resolution screen prints from a personal computer and thus have aliasing and fuzziness. This book has excellent overall tutorial and enough description of wire and bonding equipment so the reader could specify and negotiate correctly for with suppliers. The majority of the book dwells on establishing the bonding process for a particular product; determining the "window" of adjustments. The book ends with discussions on establishing quality metrics and reliability assurance tests. Each chapter of the book includes enough tutorial information to allow it to alone with little need to page backwards. A short but good reference section is at the end. If you have not read a wirebonding book, or the one you read 10 years ago was borrowed and never returned, now is the time to buy this book." ( CMPT Newsletter, June 2005)


High Temperature Electronics

High Temperature Electronics

Author: F. Patrick McCluskey

Publisher: CRC Press

Published: 1996-12-13

Total Pages: 354

ISBN-13: 9780849396236

DOWNLOAD EBOOK

The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.


Fundamentals of Electromigration-Aware Integrated Circuit Design

Fundamentals of Electromigration-Aware Integrated Circuit Design

Author: Jens Lienig

Publisher: Springer

Published: 2018-02-23

Total Pages: 171

ISBN-13: 3319735586

DOWNLOAD EBOOK

The book provides a comprehensive overview of electromigration and its effects on the reliability of electronic circuits. It introduces the physical process of electromigration, which gives the reader the requisite understanding and knowledge for adopting appropriate counter measures. A comprehensive set of options is presented for modifying the present IC design methodology to prevent electromigration. Finally, the authors show how specific effects can be exploited in present and future technologies to reduce electromigration’s negative impact on circuit reliability.