Solid Lubrication Fundamentals and Applications description of the adhesion, friction, abrasion, and wear behavior of solid film lubricants and related tribological materials, including diamond and diamond-like solid films. The book details the properties of solid surfaces, clean surfaces, and contaminated surfaces as well as discussing the structu
This latest edition of the most internationally respected reference in food chemistry for more than 30 years, Fennema’s Food Chemistry, 5th Edition once again meets and surpasses the standards of quality and comprehensive information set by its predecessors. All chapters reflect recent scientific advances and, where appropriate, have expanded and evolved their focus to provide readers with the current state-of-the-science of chemistry for the food industry. This edition introduces new editors and contributors who are recognized experts in their fields. The fifth edition presents a completely rewritten chapter on Water and Ice, written in an easy-to-understand manner suitable for professionals as well as undergraduates. In addition, ten former chapters have been completely revised and updated, two of which receive extensive attention in the new edition including Carbohydrates (Chapter 3), which has been expanded to include a section on Maillard reaction; and Dispersed Systems: Basic considerations (Chapter 7), which includes thermodynamic incompatibility/phase separation concepts. Retaining the straightforward organization and accessibility of the original, this edition begins with an examination of major food components such as water, carbohydrates, lipids, proteins, and enzymes. The second section looks at minor food components including vitamins and minerals, colorants, flavors, and additives. The final section considers food systems by reviewing basic considerations as well as specific information on the characteristics of milk, the postmortem physiology of edible muscle, and postharvest physiology of plant tissues.
The Materials Handbook is an encyclopedic, A-to-Z organization of all types of materials, featuring their key performance properties, principal characteristics and applications in product design. Materials include ferrous and nonferrous metals, plastics, elastomers, ceramics, woods, composites, chemicals, minerals, textiles, fuels, foodstuffs and natural plant and animal substances --more than 13,000 in all. Properties are expressed in both U.S. customary and metric units and a thorough index eases finding details on each and every material. Introduced in 1929 and often known simply as "Brady's," this comprehensive, one-volume, 1244 page encyclopedia of materials is intended for executives, managers, supervisors, engineers, and technicians, in engineering, manufacturing, marketing, purchasing and sales as well as educators and students. Of the dozens of families of materials updated in the 15th Edition, the most extensive additions pertain to adhesives, activated carbon, aluminides, aluminum alloys, catalysts, ceramics, composites, fullerences, heat-transfer fluids, nanophase materials, nickel alloys, olefins, silicon nitride, stainless steels, thermoplastic elastomers, titanium alloys, tungsten alloys, valve alloys and welding and hard-facing alloys. Also widely updated are acrylics, brazing alloys, chelants, biodegradable plastics, molybdenum alloys, plastic alloys, recyclate plastics, superalloys, supercritical fluids and tool steels. New classes of materials added include aliphatic polyketones, carburizing secondary-hardening steels and polyarylene ether benzimidazoles. Carcinogens and materials likely to be cancer-causing in humans are listed for the first time.
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.
Application of radioisotopes has shown significant growth in the past decade, and a major factor contributing towards this growth is the availability of a large number of cyclotrons dedicated to the production of radioisotopes for medical applications. Although there are many articles in journals on cyclotrons and their use for radioisotope production, there is no single source of information for beginners on radioisotope production using cyclotrons. This publication attempts to address this deficiency. Its contains chapters on accelerator technology, theoretical considerations of nuclear reactions, the technology behind targetry, techniques on preparation of targets, irradiation of targets under high beam currents, target processing and target recovery.
The first edition of Food processing technology was quickly adopted as the standard text by many food science and technology courses. This completely revised and updated third edition consolidates the position of this textbook as the best single-volume introduction to food manufacturing technologies available. This edition has been updated and extended to include the many developments that have taken place since the second edition was published. In particular, advances in microprocessor control of equipment, 'minimal' processing technologies, functional foods, developments in 'active' or 'intelligent' packaging, and storage and distribution logistics are described. Technologies that relate to cost savings, environmental improvement or enhanced product quality are highlighted. Additionally, sections in each chapter on the impact of processing on food-borne micro-organisms are included for the first time. - Introduces a range of processing techniques that are used in food manufacturing - Explains the key principles of each process, including the equipment used and the effects of processing on micro-organisms that contaminate foods - Describes post-processing operations, including packaging and distribution logistics
Offering an engineering perspective and the latest information on the application of this rapidly expanding technique, this practical book covers the technology, engineering, materials and products, as well as economic and ecological aspects. In addition to the theory, it also utilizes case studies that can easily be put into industrial practice. Each step of the process is discussed in terms of sustainability, and all data complies with the EU and FTA environmental regulations. Invaluable reading for food chemists and technologists, process engineers, chemists in industry, agricultural scientists, and chemical engineers. From the Contents: * Engineering Aspects of Extrusion * Raw Materials in the Production of Extrudates * Production of Breakfast Cereals, Snack Pellets, Baby Food and more * Extrusion Technique in Confectionery * Pet Food and Aquafeed * Extrusion-Cooking in Waste Management and Paper Pulp Processing * Thermoplastic Starch * Expanders * Process Automation * Scale-Up of Extrusion-Cooking in Single-Screw Extruders
This publication contains practical guidance on the design, implementation and evaluation of appropriate food fortification programmes. They are designed primarily for use by nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry.The guidelines are written from a nutrition and public health perspective, and topics discussed include: the concept of food fortification as a potential strategy for the control of micronutrient malnutrition; the prevalence, causes, and consequences of micronutrient deficiencies, and the public health benefits of micronutrient malnutrition control; technical information on the various chemical forms of micronutrients that can be used to fortify foods; regulation and international harmonisation, communication, advocacy, consumer marketing and public education.
Until comparatively recently, trace analysis techniques were in general directed toward the determination of impurities in bulk materials. Methods were developed for very high relative sensitivity, and the values determined were average values. Sampling procedures were devised which eliminated the so-called sampling error. However, in the last decade or so, a number of developments have shown that, for many purposes, the distribution of defects within a material can confer important new properties on the material. Perhaps the most striking example of this is given by semiconductors; a whole new industry has emerged in barely twenty years based entirely on the controlled distribu tion of defects within what a few years before would have been regarded as a pure, homogeneous crystal. Other examples exist in biochemistry, metallurgy, polyiners and, of course, catalysis. In addition to this of the importance of distribution, there has also been a recognition growing awareness that physical defects are as important as chemical defects. (We are, of course, using the word defect to imply some dis continuity in the material, and not in any derogatory sense. ) This broadening of the field of interest led the Materials Advisory Board( I} to recommend a new definition for the discipline, "Materials Character ization," to encompass this wider concept of the determination of the structure and composition of materials. In characterizing a material, perhaps the most important special area of interest is the surface.