Characterisation of Areal Surface Texture

Characterisation of Areal Surface Texture

Author: Richard Leach

Publisher: Springer Science & Business Media

Published: 2013-04-03

Total Pages: 355

ISBN-13: 3642364586

DOWNLOAD EBOOK

The function of a component part can be profoundly affected by its surface topography. There are many examples in nature of surfaces that have a well-controlled topography to affect their function. Examples include the hydrophobic effect of the lotus leaf, the reduction of fluid drag due to the riblet structure of shark skin, the directional adhesion of the gecko foot and the angular sensitivity of the multi-faceted fly eye. Surface structuring is also being used extensively in modern manufacturing. In this way many properties can be altered, for example optical, tribological, biological and fluidic. Previously, single line (profile) measurements were adequate to control manufacture of surfaces, but as the need to control the functionality of surfaces increases, there is a growing need for three-dimensional (areal) measurement and characterisation techniques. For this reason there has been considerable research, development and standardisation of areal techniques. This book will present the areal framework that is being adopted by the international community. Whereas previous books have concentrated on the measurement aspects, this book concentrates on the characterisation techniques, i.e. how to interpret the measurement data to give the appropriate (functional) information for a given task. The first part of the book presents the characterisation methods and the second part case studies that highlight the use of areal methods in a broad range of subject areas - from automobile manufacture to archaeology. Contents Introduction to Surface Topography The Areal Field Parameters The Areal Feature Parameters Areal Filtering Methods Areal Form Removal Areal Fractal Methods Choosing the Appropriate Parameter Characterisation of Individual Areal Features Multi-Scale Signature of Surface Topography Correlation of Areal Surface Texture Parameters to Solar Cell Efficiency Characterisation of Cylinder Liner Honing Textures for Production Control Characterisation of the Mechanical Bond Strength for Copper on Glass Plating Applications Inspection of Laser Structured Cams and Conrods Road Surfaces


Advanced Techniques for Assessment Surface Topography

Advanced Techniques for Assessment Surface Topography

Author: Liam Blunt

Publisher: Elsevier

Published: 2003-06-01

Total Pages: 365

ISBN-13: 0080526527

DOWNLOAD EBOOK

This publication deals with the latest developments in the field of 3D surface metrology and will become a seminal text in this important area. It has been prepared with the support of the European Community's Directorate General XII and represents the culmination of research conducted by 11 international partners as part of an EU-funded project. The aim of the project is to inform standards bodies of the possibilities that exist for a new international standard covering the field of 3D surface characterisation.The book covers a description of the proposed 3D surface parameters and advanced filtering techniques using wavelet and robust Gaussian methodologies. The next generation areal surface characterisation theories are discussed and their practical implementation is illustrated. It describes techniques for calibration of 3D instrumentation, including stylus instruments as well as scanning probe instrumentation. Practical verification of the 3D parameters and the filtering is illustrated through a series of case studies which cover bio-implant surfaces, automotive cylinder liner and steel sheet. Finally, future developments of the subject are alluded to and implications for future standardisation and development are discussed.


Optical Measurement of Surface Topography

Optical Measurement of Surface Topography

Author: Richard Leach

Publisher: Springer Science & Business Media

Published: 2011-03-31

Total Pages: 333

ISBN-13: 3642120121

DOWNLOAD EBOOK

The measurement and characterisation of surface topography is crucial to modern manufacturing industry. The control of areal surface structure allows a manufacturer to radically alter the functionality of a part. Examples include structuring to effect fluidics, optics, tribology, aerodynamics and biology. To control such manufacturing methods requires measurement strategies. There is now a large range of new optical techniques on the market, or being developed in academia, that can measure areal surface topography. Each method has its strong points and limitations. The book starts with introductory chapters on optical instruments, their common language, generic features and limitations, and their calibration. Each type of modern optical instrument is described (in a common format) by an expert in the field. The book is intended for both industrial and academic scientists and engineers, and will be useful for undergraduate and postgraduate studies.


Industrial X-Ray Computed Tomography

Industrial X-Ray Computed Tomography

Author: Simone Carmignato

Publisher: Springer

Published: 2017-10-18

Total Pages: 372

ISBN-13: 3319595733

DOWNLOAD EBOOK

X-ray computed tomography has been used for several decades as a tool for measuring the three-dimensional geometry of the internal organs in medicine. However, in recent years, we have seen a move in manufacturing industries for the use of X-ray computed tomography; first to give qualitative information about the internal geometry and defects in a component, and more recently, as a fully-quantitative technique for dimensional and materials analysis. This trend is primarily due to the ability of X-ray computed tomography to give a high-density and multi-scale representation of both the external and internal geometry of a component, in a non-destructive, non-contact and relatively fast way. But, due to the complexity of X-ray computed tomography, there are remaining metrological issues to solve and the specification standards are still under development. This book will act as a one-stop-shop resource for students and users of X-ray computed tomography in both academia and industry. It presents the fundamental principles of the technique, detailed descriptions of the various components (hardware and software), current developments in calibration and performance verification and a wealth of example applications. The book will also highlight where there is still work to do, in the perspective that X-ray computed tomography will be an essential part of Industry 4.0.


Computational Surface and Roundness Metrology

Computational Surface and Roundness Metrology

Author: Balasubramanian Muralikrishnan

Publisher: Springer Science & Business Media

Published: 2008-09-11

Total Pages: 263

ISBN-13: 1848002971

DOWNLOAD EBOOK

“Computational Surface and Roundness Metrology” provides an extraordinarily practical and hands-on approach towards understanding the diverse array of mathematical methods used in surface texture and roundness analysis. The book, in combination with a mathematical package or programming language interface, provides an invaluable tool for experimenting, learning, and discovering the many flavors of mathematics that are so routinely taken for granted in metrology. Whether the objective is to understand the origin of that ubiquitous transmission characteristics curve of a filter we see so often yet do not quite comprehend, or to delve into the intricate depths of a deceptively simple problem of fitting a line or a plane to a set of points, this book describes it all (in exhaustive detail). From the graduate student of metrology to the practicing engineer on the shop floor, this book is a must-have reference for all involved in metrology, instrumentation/optics, manufacturing, and electronics.


Industrial Metrology

Industrial Metrology

Author: Graham T. Smith

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 336

ISBN-13: 1447138147

DOWNLOAD EBOOK

The subject of this book is surface metrology, in particular two major aspects: surface texture and roundness. It has taken a long time for manufacturing engineers and designers to realise the usefulness of these features in quality of conformance and quality of design. Unfortunately this awareness has come at a time when engineers versed in the use and specification of surfaces are at a premium. Traditionally surface metrology usage has been dictated by engineers who have served long and demanding apprenticeships, usually in parallel with studies leading to technician-level qualifications. Such people understood the processes and the achievable accuracies of machine tools, thereby enabling them to match production capability with design requirements. This synergy, has been made possible by the understanding of adherence to careful metrological procedures and a detailed knowledge of surface measuring instruments and their operation, in addition to wider inspection room techniques. With the demise in the UK of polytechnics and technical colleges, this source of skilled technicians has all but dried up. The shortfall has been made up of semi skilled craftsmen, or inexperienced graduates who cannot be expected to satisfy tradition al or new technology needs. Miniaturisation, for example, has had a pro found effect. Engineering parts are now routinely being made with nanometre surface texture and fiatness. At these molecular and atomic scales, the engineer has to be a physicist.


Fundamentals of Laser Powder Bed Fusion of Metals

Fundamentals of Laser Powder Bed Fusion of Metals

Author: Igor Yadroitsev

Publisher: Elsevier

Published: 2021-05-23

Total Pages: 678

ISBN-13: 0128240911

DOWNLOAD EBOOK

Laser powder bed fusion of metals is a technology that makes use of a laser beam to selectively melt metal powder layer-by-layer in order to fabricate complex geometries in high performance materials. The technology is currently transforming aerospace and biomedical manufacturing and its adoption is widening into other industries as well, including automotive, energy, and traditional manufacturing. With an increase in design freedom brought to bear by additive manufacturing, new opportunities are emerging for designs not possible previously and in material systems that now provide sufficient performance to be qualified in end-use mission-critical applications. After decades of research and development, laser powder bed fusion is now enabling a new era of digitally driven manufacturing. Fundamentals of Laser Powder Bed Fusion of Metals will provide the fundamental principles in a broad range of topics relating to metal laser powder bed fusion. The target audience includes new users, focusing on graduate and undergraduate students; however, this book can also serve as a reference for experienced users as well, including senior researchers and engineers in industry. The current best practices are discussed in detail, as well as the limitations, challenges, and potential research and commercial opportunities moving forward. - Presents laser powder bed fusion fundamentals, as well as their inherent challenges - Provides an up-to-date summary of this advancing technology and its potential - Provides a comprehensive textbook for universities, as well as a reference for industry - Acts as quick-reference guide


Fundamental Principles of Engineering Nanometrology

Fundamental Principles of Engineering Nanometrology

Author: Richard Leach

Publisher: Elsevier

Published: 2014-05-17

Total Pages: 384

ISBN-13: 1455777501

DOWNLOAD EBOOK

Working at the nano-scale demands an understanding of the high-precision measurement techniques that make nanotechnology and advanced manufacturing possible. Richard Leach introduces these techniques to a broad audience of engineers and scientists involved in nanotechnology and manufacturing applications and research. He also provides a routemap and toolkit for metrologists engaging with the rigor of measurement and data analysis at the nano-scale. Starting from the fundamentals of precision measurement, the author progresses into different measurement and characterization techniques. The focus on nanometrology in engineering contexts makes this book an essential guide for the emerging nanomanufacturing / nanofabrication sector, where measurement and standardization requirements are paramount both in product specification and quality assurance. This book provides engineers and scientists with the methods and understanding needed to design and produce high-performance, long-lived products while ensuring that compliance and public health requirements are met. Updated to cover new and emerging technologies, and recent developments in standards and regulatory frameworks, this second edition includes many new sections, e.g. new technologies in scanning probe and e-beam microscopy, recent developments in interferometry and advances in co-ordinate metrology. - Demystifies nanometrology for a wide audience of engineers, scientists, and students involved in nanotech and advanced manufacturing applications and research - Introduces metrologists to the specific techniques and equipment involved in measuring at the nano-scale or to nano-scale uncertainty - Fully updated to cover the latest technological developments, standards, and regulations


Proceedings of the 12th International Conference on Measurement and Quality Control - Cyber Physical Issue

Proceedings of the 12th International Conference on Measurement and Quality Control - Cyber Physical Issue

Author: Vidosav D. Majstorovic

Publisher: Springer

Published: 2019-05-03

Total Pages: 343

ISBN-13: 3030181774

DOWNLOAD EBOOK

This book gathers the proceedings of the 12th International Conference on Measurement and Quality Control – Cyber Physical Issues (IMEKO TC 14 2019), held in Belgrade, Serbia, on 4–7 June 2019. The event marks the latest in a series of high-level conferences that bring together experts from academia and industry to exchange knowledge, ideas, experiences, research findings, and information in the field of measurement of geometrical quantities. The book addresses a wide range of topics, including: 3D measurement of GPS characteristics, measurement of gears and threads, measurement of roughness, micro- and nano-metrology, laser metrology for precision measurements, cyber physical metrology, optical measurement techniques, industrial computed tomography, multisensor techniques, intelligent measurement systems, evaluating measurement uncertainty, dimensional management in industry, product quality assurance methods, and big data analytics. By providing updates on key issues and highlighting recent advances in measurement and quality control, the book supports the transfer of vital knowledge to the next generation of academics and practitioners.