Chaotic Behavior in Quantum Systems

Chaotic Behavior in Quantum Systems

Author: Giulio Casati

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 380

ISBN-13: 1461324432

DOWNLOAD EBOOK

Six years ago, in June 1977, the first international conference on chaos in classical dynamical systems took place here in Como. For the first time, physicists, mathematicians, biologists, chemists, economists, and others got together to discuss the relevance of the recent progress in nonlinear classical dynamics for their own research field. Immediately after, pUblication of "Nonlinear Science Abstracts" started, which, in turn, led to the Physica D Journal and to a rapid increase of the research activity in the whole area with the creation of numerous "Nonlinear Centers" around the world. During these years great progress has been made in understanding the qualitative behavior of classical dynamical systems and now we can appreciate the beautiful complexity and variety of their motion. Meanwhile, an increasing number of scientists began to wonder whether and how such beautiful structures would persist in quantum motion. Indeed, mainly integrable systems have been previously con sidered by Quantum Mechanics and therefore the problem is open how to describe the qualitative behavior of systems whose classical limit is non-integrable. The present meeting was organized in view of the fact that scientists working in different fields - mathematicians, theoretical physicists, solid state physicists, nuclear physicists, chemists and others - had common problems. Moreover, we felt that it was necessary to clarify some fundamental questions concerning the logical basis for the discussion including the very definition of chaos in Quantum Mechanics.


Chaos in Classical and Quantum Mechanics

Chaos in Classical and Quantum Mechanics

Author: Martin C. Gutzwiller

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 445

ISBN-13: 1461209838

DOWNLOAD EBOOK

Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.


The Transition to Chaos

The Transition to Chaos

Author: Linda Reichl

Publisher: Springer Nature

Published: 2021-04-12

Total Pages: 555

ISBN-13: 3030635341

DOWNLOAD EBOOK

Based on courses given at the universities of Texas and California, this book treats an active field of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature; while problems at the ends of chapters help students clarify their understanding. This new edition has an updated presentation throughout, and a new chapter on open quantum systems.


The Transition to Chaos

The Transition to Chaos

Author: Linda Reichl

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 566

ISBN-13: 1475743521

DOWNLOAD EBOOK

resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].


Quantum Chaos

Quantum Chaos

Author: Hans-Jürgen Stöckmann

Publisher: Cambridge University Press

Published: 1999-10-13

Total Pages: 386

ISBN-13: 0521592844

DOWNLOAD EBOOK

Discusses quantum chaos, an important area of nonlinear science.


Quantum Chaos

Quantum Chaos

Author: Giulio Casati

Publisher: Cambridge University Press

Published: 1995-04-27

Total Pages: 700

ISBN-13: 9780521432917

DOWNLOAD EBOOK

This book represents a comprehensive overview of our present understanding of chaotic behavior in a wide variety of quantum and semiclassical systems, and describes both experimental and theoretical investigations. A general introduction sets out the main features of chaos in quantum systems. Thereafter, in an authoritative collection of new or previously published papers, prominent scientists put forward their particular interpretations of quantum chaos with reference to a broad range of interesting physical systems.


Quantum Signatures of Chaos

Quantum Signatures of Chaos

Author: Fritz Haake

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 491

ISBN-13: 3662045060

DOWNLOAD EBOOK

This classic text provides an excellent introduction to a new and rapidly developing field of research. Now well established as a textbook in this rapidly developing field of research, the new edition is much enlarged and covers a host of new results.


The Essence Of Chaos

The Essence Of Chaos

Author: Flavio Lorenzelli

Publisher: CRC Press

Published: 2003-09-02

Total Pages: 236

ISBN-13: 0203214587

DOWNLOAD EBOOK

The study of chaotic systems has become a major scientific pursuit in recent years, shedding light on the apparently random behaviour observed in fields as diverse as climatology and mechanics. InThe Essence of Chaos Edward Lorenz, one of the founding fathers of Chaos and the originator of its seminal concept of the Butterfly Effect, presents his own landscape of our current understanding of the field. Lorenz presents everyday examples of chaotic behaviour, such as the toss of a coin, the pinball's path, the fall of a leaf, and explains in elementary mathematical strms how their essentially chaotic nature can be understood. His principal example involved the construction of a model of a board sliding down a ski slope. Through this model Lorenz illustrates chaotic phenomena and the related concepts of bifurcation and strange attractors. He also provides the context in which chaos can be related to the similarly emergent fields of nonlinearity, complexity and fractals. As an early pioneer of chaos, Lorenz also provides his own story of the human endeavour in developing this new field. He describes his initial encounters with chaos through his study of climate and introduces many of the personalities who contributed early breakthroughs. His seminal paper, "Does the Flap of a Butterfly's Wing in Brazil Set Off a Tornado in Texas?" is published for the first time.


Synergetics

Synergetics

Author: Hermann Haken

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 325

ISBN-13: 3642963633

DOWNLOAD EBOOK

The spontaneous formation of well organized structures out of germs or even out of chaos is one of the most fascinating phenomena and most challenging problems scientists are confronted with. Such phenomena are an experience of our daily life when we observe the growth of plants and animals. Thinking of much larger time scales, scientists are led into the problems of evolution, and, ultimately, of the origin of living matter. When we try to explain or understand in some sense these extremely complex biological phenomena it is a natural question, whether pro cesses of self-organization may be found in much simpler systems of the un animated world. In recent years it has become more and more evident that there exist numerous examples in physical and chemical systems where well organized spatial, temporal, or spatio-temporal structures arise out of chaotic states. Furthermore, as in living of these systems can be maintained only by a flux of organisms, the functioning energy (and matter) through them. In contrast to man-made machines, which are to exhibit special structures and functionings, these structures develop spon devised It came as a surprise to many scientists that taneously-they are self-organizing. numerous such systems show striking similarities in their behavior when passing from the disordered to the ordered state. This strongly indicates that the function of such systems obeys the same basic principles. In our book we wish to explain ing such basic principles and underlying conceptions and to present the mathematical tools to cope with them.