Chaos on the Interval

Chaos on the Interval

Author: Sylvie Ruette

Publisher: American Mathematical Soc.

Published: 2017-03-02

Total Pages: 231

ISBN-13: 147042956X

DOWNLOAD EBOOK

The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the “most interesting” part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gives complete proofs and addresses both graduate students and researchers.


CHAOS Report: Decision Latency Theory: It Is All About the Interval

CHAOS Report: Decision Latency Theory: It Is All About the Interval

Author: James Johnson

Publisher: Lulu.com

Published: 2018

Total Pages: 72

ISBN-13: 0692048308

DOWNLOAD EBOOK

The CHAOS Report: Decision Latency Theory: It¿s All About the Interval. This CHAOS Report 2018 presents the root cause of software project performance. The report also includes classic CHAOS data in different forms with many charts. Most of the charts come from the CHAOS database of over 50,000 in-depth project profiles from the fiscal years 2013 to 2017. A highlight of this report is our analysis and thought leadership what makes a project succeed and winning hand and what makes a losing hand.


The Theory of Chaotic Attractors

The Theory of Chaotic Attractors

Author: Brian R. Hunt

Publisher: Springer Science & Business Media

Published: 2004-01-08

Total Pages: 528

ISBN-13: 9780387403496

DOWNLOAD EBOOK

The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.


An Introduction To Chaotic Dynamical Systems

An Introduction To Chaotic Dynamical Systems

Author: Robert Devaney

Publisher: CRC Press

Published: 2018-03-09

Total Pages: 280

ISBN-13: 0429981937

DOWNLOAD EBOOK

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Chaos

Chaos

Author: Kathleen Alligood

Publisher: Springer

Published: 2012-12-06

Total Pages: 620

ISBN-13: 3642592813

DOWNLOAD EBOOK

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.


Chaos: A Mathematical Introduction

Chaos: A Mathematical Introduction

Author: John Banks

Publisher: Cambridge University Press

Published: 2003-05-08

Total Pages: 310

ISBN-13: 9780521531047

DOWNLOAD EBOOK

When new ideas like chaos first move into the mathematical limelight, the early textbooks tend to be very difficult. The concepts are new and it takes time to find ways to present them in a form digestible to the average student. This process may take a generation, but eventually, what originally seemed far too advanced for all but the most mathematically sophisticated becomes accessible to a much wider readership. This book takes some major steps along that path of generational change. It presents ideas about chaos in discrete time dynamics in a form where they should be accessible to anyone who has taken a first course in undergraduate calculus. More remarkably, it manages to do so without discarding a commitment to mathematical substance and rigour. The book evolved from a very popular one-semester middle level undergraduate course over a period of several years and has therefore been well class-tested.


Bibliography On Chaos

Bibliography On Chaos

Author: Bailin Hao

Publisher: World Scientific

Published: 1991-08-22

Total Pages: 523

ISBN-13: 9814506362

DOWNLOAD EBOOK

This volume is a collection of more than 7000 full titles of books and papers related to chaotic behaviour in nonlinear dynamics. Emphasis has been made on recent publications, but many publications which appeared before 1980 are also included. Many titles have been checked with the authors. The scope of the Bibliography is not restricted to physics and mathematics of chaos only. Applications of chaotic dynamics to other branches of natural and social sciences are also considered. Works related to chaotic dynamics, e.g., papers on turbulence dynamical systems theory and fractal geometry, are listed at the discretion of the author or the compiler. This Bibliography is expected to be an important reference book for libraries and individual researchers.


Ray and Wave Chaos in Ocean Acoustics

Ray and Wave Chaos in Ocean Acoustics

Author: Denis Makarov

Publisher: World Scientific

Published: 2010

Total Pages: 412

ISBN-13: 9814273171

DOWNLOAD EBOOK

A systematic study of chaotic ray dynamics in underwater acoustic waveguides began in the mid-1990s when it was realized that this factor plays a crucial role in long-range sound propagation in the ocean. The phenomenon of ray chaos and its manifestation at a finite wavelength ? wave chaos ? have been investigated by combining methods from the theory of wave propagation and the theory of dynamical and quantum chaos. This book is the first monograph summarizing results obtained in this field. Emphasis is made on the exploration of ray and modal structures of the wave field in an idealized environmental model with periodic range dependence and in a more realistic model with sound speed fluctuations induced by random internal waves. The book is intended for acousticians investigating the long-range sound transmission through the fluctuating ocean and also for researchers studying waveguide propagation in other media. It will be of major interest to scientists working in the field of dynamical and quantum chaos.


Chaos

Chaos

Author: Angelo Vulpiani

Publisher: World Scientific

Published: 2010

Total Pages: 482

ISBN-13: 9814277665

DOWNLOAD EBOOK

Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.