This document is a cooperative effort among fifteen Federal agencies and partners to produce a common reference on stream corridor restoration. It responds to a growing national and international interest in restoring stream corridors.
How has California’s landscape changed? What did now-familiar places look like during prior centuries? What can the past teach us about designing future landscapes? The Napa Valley Historical Ecology Atlas explores these questions by taking readers on a dazzling visual tour of Napa Valley from the early 1800s onward—a forgotten land of brilliant wildflower fields, lush wetlands, and grand oak savannas. Robin Grossinger weaves together rarely-seen historical maps, travelers’s accounts, photographs, and paintings to reconstruct early Napa Valley and document its physical transformation over the past two centuries. The Atlas provides a fascinating new perspective on this iconic landscape, showing the natural heritage that has enabled the agricultural success of the region today. The innovative research of Grossinger and his historical ecology team allows us to visualize the past in unprecedented detail, improving our understanding of the living landscapes we inhabit and suggesting strategies to increase their health and resilience in the future.
The San Francisco Bay, the biggest estuary on the west coast of North America, was once surrounded by an almost unbroken chain of tidal wetlands, a fecund sieve of ecosystems connecting the land and the Bay. Today, most of these wetlands have disappeared under the demands of coastal development, and those that remain cling precariously to a drastically altered coastline. This volume is a collaborative effort of nearly 40 scholars in which the wealth of scientific knowledge available on tidal wetlands of the San Francisco Estuary is summarized and integrated. This book addresses issues of taxonomy, geomorphology, toxicology, the impact of climate change, ecosystem services, public policy, and conservation, and it is an essential resource for ecologists, environmental scientists, coastal policymakers, and researchers interested in estuaries and conserving and restoring coastal wetlands around the world.
Tide gauges show that global sea level has risen about 7 inches during the 20th century, and recent satellite data show that the rate of sea-level rise is accelerating. As Earth warms, sea levels are rising mainly because ocean water expands as it warms; and water from melting glaciers and ice sheets is flowing into the ocean. Sea-level rise poses enormous risks to the valuable infrastructure, development, and wetlands that line much of the 1,600 mile shoreline of California, Oregon, and Washington. As those states seek to incorporate projections of sea-level rise into coastal planning, they asked the National Research Council to make independent projections of sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account regional factors that affect sea level. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future explains that sea level along the U.S. west coast is affected by a number of factors. These include: climate patterns such as the El Niño, effects from the melting of modern and ancient ice sheets, and geologic processes, such as plate tectonics. Regional projections for California, Oregon, and Washington show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections. However, projections are lower north of Cape Mendocino because the land is being pushed upward as the ocean plate moves under the continental plate along the Cascadia Subduction Zone. However, an earthquake magnitude 8 or larger, which occurs in the region every few hundred to 1,000 years, would cause the land to drop and sea level to suddenly rise.
One of California's most remarkable wetlands, Suisun Marsh is the largest tidal marsh on the West Coast and a major feature of the San Francisco Estuary. This productive and unique habitat supports endemic species, is a nursery for native fishes, and is a vital link for migratory waterfowl. The 6,000-year-old marsh has been affected by human activity, and humans will continue to have significant impacts on the marsh as the sea level rises and cultural values shift in the century ahead. This study includes in-depth information about the ecological and human history of Suisun Marsh, its abiotic and biotic characteristics, agents of ecological change, and alternative futures facing this ecosystem.
Owing to climate change related uncertainties and anticipated population growth, different parts of the developing and the developed world (particularly urban areas) are experiencing water shortages or flooding and security of fit-for-purpose supplies is becoming a major issue. The emphasis on decentralized alternative water supply systems has increased considerably. Most of the information on such systems is either scattered or focuses on large scale reuse with little consideration given to decentralized small to medium scale systems. Alternative Water Supply Systems brings together recent research into the available and innovative options and additionally shares experiences from a wide range of contexts from both developed and developing countries. Alternative Water Supply Systems covers technical, social, financial and institutional aspects associated with decentralized alternative water supply systems. These include systems for greywater recycling, rainwater harvesting, recovery of water through condensation and sewer mining. A number of case studies from the UK, the USA, Australia and the developing world are presented to discuss associated environmental and health implications. The book provides insights into a range of aspects associated with alternative water supply systems and an evidence base (through case studies) on potential water savings and trade-offs. The information organized in the book is aimed at facilitating wider uptake of context specific alternatives at a decentralized scale mainly in urban areas. This book is a key reference for postgraduate level students and researchers interested in environmental engineering, water resources management, urban planning and resource efficiency, water demand management, building service engineering and sustainable architecture. It provides practical insights for water professionals such as systems designers, operators, and decision makers responsible for planning and delivering sustainable water management in urban areas through the implementation of decentralized water recycling. Authors: Fayyaz Ali Memon, Centre for Water Systems, University of Exeter, UK and Sarah Ward, Centre for Water Systems, University of Exeter, UK